Home
Class 12
MATHS
If a ,\ b ,\ c are real numbers, then fi...

If `a ,\ b ,\ c` are real numbers, then find the intervals in which `f(x)=|(x+a^2,a b, a c),( a b, x+b^2,b c),( a c, b c, x+c^2)|` is increasing or decreasing.

A

`(-2/3(a^2 + b^2 + c^2),0)`

B

`(0, 2/3 (a^2 + b^2 + c^2))`

C

`(0,(a^2 + b^2 + c^2)/(3))`

D

no where

Text Solution

Verified by Experts

The correct Answer is:
A

`f.(x)=|(1,0,0),(ab,x+b^(2),bc),(ac,bc,x+c^(2)),(ac,bc,x+c^(2))|+|(x+a^(2),ab,ac),(0,1,0),(ac,bc,x+c^(2))|+|(x+a^(2),ab,ac),(ab,x+b^(2),bc),(0,0,1)|`
`=(x+b^(2))(x+b^(2))(x+c^(2))-b^(2)c^(2)+(x+a^(2))(x+c^(2))-a^(2)c^(2)+(x+a^(2))(x+b^(2))-a^(2)b^(2)`
`=3x^(2)+2x(a^(2)+b^(2)+c^(2))lt0`
`f(x)` is decreasing in
`x in((-2)/(3)(a^(2)+b^(2)+c^(2)),0)`
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 2

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION - 2)|10 Videos
  • MOCK TEST 13

    VMC MODULES ENGLISH|Exercise MATHEMATICS( SECTION-2)|5 Videos
  • MOCK TEST 3

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

If a , b , c are real numbers, then find the intervals in which f(x)=|x+a^2a b a c a b x+b^2b c a c b c x+c^2| is increasing or decreasing.

If f(x)=|[x+a^2 , a b , a c],[a b, x+b^2,b c],[ ac,b c, x+c^2]| . then f^(prime)(x)

If a,b,c are positive real numbers, then the number of real roots of the equation ax^2+b|x|+c is

If a, b, c are real and a!=b , then the roots ofthe equation, 2(a-b)x^2-11(a + b + c) x-3(a-b) = 0 are :

If f(x)=|x+a^2a b a c a b x+b^2b c a c b c x+c^2|,t h e n prove that f^(prime)(x)=3x^2+2x(a^2+b^2+c^2)dot

If a , b , c , are real number such that a c!=0, then show that at least one of the equations a x^2+b x+c=0 and -a x^2+b x+c=0 has real roots.

Let a,b,c be rational numbers and f:Z->Z be a function given by f(x)=a x^2+b x+c. Then, a+b is

If a, b, c are real then (b-x)^(2)-4(a-x) (c-x)=0 will have always roots which are

Let a ,b ,and c be real numbers such that 4a+2b+c=0 and a b > 0. Then the equation a x^2+b x+c = 0

Prove that : |{:(x+a,b,c),(a,x+b,c),(a,b,x+c):}|=x^(2)(x+a+b+c)