Home
Class 12
MATHS
If f(x) = (e^([x] + |x|) -3)/([x] + |x|+...

If `f(x) = (e^([x] + |x|) -3)/([x] + |x|+ 1)` , then: (where [.] represents greatest integer function)

A

`lim_(x to 0^(+)) f(x) = -2`

B

`lim_(x to 0^(+)) f(x) = 0`

C

`lim_(x to 0^(+)) f(x) = 2`

D

`lim_(x to 0^(+)) f(x)` exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the right-hand limit (RHL) and left-hand limit (LHL) of the function \( f(x) = \frac{e^{[x] + |x|} - 3}{[x] + |x| + 1} \) as \( x \) approaches 0. Here, \([x]\) represents the greatest integer function (floor function), and \(|x|\) represents the absolute value of \( x \). ### Step 1: Calculate the Right-Hand Limit (RHL) as \( x \to 0^+ \) 1. **Substitute \( x \to 0^+ \)**: - When \( x \) approaches 0 from the right, \([x] = 0\) and \(|x| = x\). - Thus, the function becomes: \[ f(x) = \frac{e^{0 + x} - 3}{0 + x + 1} = \frac{e^x - 3}{x + 1} \] 2. **Evaluate the limit**: - Now, we need to find: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{e^x - 3}{x + 1} \] - Substituting \( x = 0 \): \[ = \frac{e^0 - 3}{0 + 1} = \frac{1 - 3}{1} = -2 \] ### Step 2: Calculate the Left-Hand Limit (LHL) as \( x \to 0^- \) 1. **Substitute \( x \to 0^- \)**: - When \( x \) approaches 0 from the left, \([x] = -1\) and \(|x| = -x\). - Thus, the function becomes: \[ f(x) = \frac{e^{-1 - (-x)} - 3}{-1 + (-x) + 1} = \frac{e^{-1 + x} - 3}{-x} \] 2. **Evaluate the limit**: - Now, we need to find: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{e^{-1 + x} - 3}{-x} \] - Substituting \( x = 0 \): \[ = \frac{e^{-1} - 3}{0} \text{ (This approaches infinity)} \] ### Step 3: Compare RHL and LHL - From the calculations: - RHL as \( x \to 0^+ \) is \(-2\). - LHL as \( x \to 0^- \) approaches infinity. Since the RHL and LHL are not equal, the limit does not exist at \( x = 0 \). ### Conclusion The function \( f(x) \) does not exist at \( x = 0 \) since the left-hand limit and right-hand limit are not equal.

To solve the problem, we need to find the right-hand limit (RHL) and left-hand limit (LHL) of the function \( f(x) = \frac{e^{[x] + |x|} - 3}{[x] + |x| + 1} \) as \( x \) approaches 0. Here, \([x]\) represents the greatest integer function (floor function), and \(|x|\) represents the absolute value of \( x \). ### Step 1: Calculate the Right-Hand Limit (RHL) as \( x \to 0^+ \) 1. **Substitute \( x \to 0^+ \)**: - When \( x \) approaches 0 from the right, \([x] = 0\) and \(|x| = x\). - Thus, the function becomes: \[ ...
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 2

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION - 2)|10 Videos
  • MOCK TEST 13

    VMC MODULES ENGLISH|Exercise MATHEMATICS( SECTION-2)|5 Videos
  • MOCK TEST 3

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|x-1|.([x]=[-x]), then (where [.] represents greatest integer function)

Let f(x) = [sin ^(4)x] then ( where [.] represents the greatest integer function ).

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the greatest integer function)

Let f(x) = [x] and [] represents the greatest integer function, then

The greatest value of f(x)=cos(x e^([x])+7x^2-3x),x in [-1,oo], is (where [.] represents the greatest integer function). -1 (b) 1 (c) 0 (d) none of these

Consider the function f(x)=cos^(-1)([2^(x)])+sin^(-1)([2^(x)]-1) , then (where [.] represents the greatest integer part function)

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

If f(x)=[x](sin kx)^(p) is continuous for real x, then (where [.] represents the greatest integer function)

Let f(x)={(x(e^([x]+x)-4)/([x]+|x|), , x!=0),(3, , x=0):} Where [ ] denotes the greatest integer function. Then,

f(x)=[x] and g(x)={{:(1",",x gt1),(2",", x le 1):} , (where [.] represents the greatest integer function). Then g(f(x)) is discontinuous at x = _______________