Home
Class 12
MATHS
A B is a double ordinate of the parabola...

`A B` is a double ordinate of the parabola `y^2=4a xdot` Tangents drawn to the parabola at `Aa n dB` meet the y-axis at `A_1a n dB_1` , respectively. If the area of trapezium `AA_1B_1B` is equal to `12 a^2,` then the angle subtended by `A_1B_1` at the focus of the parabola is equal to `2tan^(-1)(3)` (b) `tan^(-1)(3)` `2tan^(-1)(2)` (d) `tan^(-1)(2)`

A

`pi/2`

B

`tan^(-1)(3/4)`

C

`tan^(-1) ((-4)/(3))`

D

`pi/3`

Text Solution

Verified by Experts

The correct Answer is:
C

`p(at_(1)^(2),2at_(1))" "t_(2)=-t_(1)`
`Q(at_(2)^(2),2at_(2))`
Equation of tangent at P `" "t_(1)y=x+at_(1)^(2)`
`S-=(0, at_(1))`
`R-=(0, -at_(1))`

Area of trapezium PQRS
`=(1)/(2)(2at_(1)+4at_(1))xxat_(1)^(2)=24a%^(2)`
`=3a^(2)t_(1)^(3)=24a^(2)`
`t_(1)^(3)=(24)/(3)=8`
`t_(1)=2`
`tan theta=(at_(1))/(a)=t_(1)=2`
Angle subtended by SR at focus
`tan 2 theta =(2 tan theta)/(1-tan^(2)theta)=(4)/(1-4)=(-4)/(3), alpha=tan^(-1)((-4)/(3))`
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 2

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION - 2)|10 Videos
  • MOCK TEST 13

    VMC MODULES ENGLISH|Exercise MATHEMATICS( SECTION-2)|5 Videos
  • MOCK TEST 3

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

The angle between the tangents to the curves y=x^2a n dx=y^2a t(1,1) is cos^(-1)(4/5) (b) sin^(-1)(3/5) tan^(-1)(3/4) (d) tan^(-1)(1/3)

Find the angle between the tangents drawn from the origin to the parabolas y^2=4a(x−a) (a) 90^@ (b) 30^@ (c) tan^-1 (1/2) (d) 45^@

tan^(-1)(1/2)+tan^(-1)(1/3) is equal to

Two mutually perpendicular tangents of the parabola y^(2)=4ax meet the axis at P_(1)andP_(2) . If S is the focal of the parabola, Then (1)/(SP_(1))+(1)/(SP_(2)) is equal to

Double ordinate A B of the parabola y^2=4a x subtends an angle pi/2 at the focus of the parabola. Then the tangents drawn to the parabola at Aa n dB will intersect at (a) (-4a ,0) (b) (-2a ,0) (-3a ,0) (d) none of these

Two mutually perpendicular tangents of the parabola y^2=4a x meet the axis at P_1a n dP_2 . If S is the focus of the parabola, then 1/(S P_1) +1/(S P_2) is equal to 4/a (b) 2/1 (c) 1/a (d) 1/(4a)

2tan^(-1)(-2) is equal to (a) -cos t^(-1)((-3)/5) (b) -pi+cos^(-1)3/5 (c) -pi/2+tan^(-1)(-3/4) (d) -picot^(-1)(-3/4)

Double ordinate A B of the parabola y^2=4a x subtends an angle pi/2 at the vertex of the parabola. Then the tangents drawn to the parabola at A .and B will intersect at (a) (-4a ,0) (b) (-2a ,0) (-3a ,0) (d) none of these

The angle between the normals of ellipse 4x^2 + y^2 = 5 , at the intersection of 2x+y=3 and the ellipse is (A) tan^(-1) (3/5) (B) tan^(-1) (3/4) (C) tan^(-1) (4/3) (D) tan^(-1) (4/5)

If the tangents to the parabola y^2=4a x intersect the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 at Aa n dB , then find the locus of the point of intersection of the tangents at Aa n dBdot