Home
Class 12
MATHS
Let Delta = |{:(-bc,,b^(2)+bc,,c^(2)+bc)...

Let `Delta = |{:(-bc,,b^(2)+bc,,c^(2)+bc),(a^(2)+ac,,-ac,,c^(2)+ac),(a^(2)+ab,,b^(2)+ab,,-ab):}|` and the equation
`px^(3) +qx^(2) +rx+s=0` has roots a,b,c where `a,b,c in R^(+)`
`" if " Delta =27 " and " a^(2) +b^(2)+c^(2) =3`then

Text Solution

Verified by Experts

The correct Answer is:
`0.50`

`Delta=abc|((-bc)/(a),b+c,c+b),(a+c,(-ac)/(b),c+a),(a+b,a+b,(-ab)/(c))|" , "Delta=(abc)/(abc)|(-bc,ab+ac,ac+ab),(ab+bc,-ac,bc+ab),(ac+bc,ac+bc,-ab)|`
`Delta=|(-b,ab+ac,ac+ab),(ab+bc,-ac,ab+bc),(ac+bc,ac+bc,-ab)|" , "Delta=|(-bc-ab-ac,0,ac+ab),(ab+bc+ac,-ab-bc-ac,ab+bc),(0,ab+bc+ac,-ab)|{:(C_(1)rarrC_(1)-C_(2)),(C_(2)rarrC_(2)-C_(3)):}`
`=(ab+bc+ac)^(2)|(-1,0,ac+ab),(1,-1,ab+bc),(0,1,-ab)|R_(1)rarrR_(1)+R_(2)+R_(3)`
`Delta=(ab+bc+ac)^(3)=37`
`ab+bc+ac=3,a^(2)+c^(2)+b^(2)=2`
`a+b+c=(-q)/(p),(a+b+c)^(2)=(q^(2))/(p^(2)),2+2xx3=(q^(2))/(p^(2))rArr(q^(2))/(p^(2))=9,(p)/(q)=(-1)/(2sqrt2),(sqrt2p)/(q)+1=(1)/(2)`
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 2

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION - 2)|10 Videos
  • MOCK TEST 13

    VMC MODULES ENGLISH|Exercise MATHEMATICS( SECTION-2)|5 Videos
  • MOCK TEST 3

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

|[-bc, b^2+bc, c^2 +bc],[a^2+ac,-ac,c^2+ac],[a^2+ab,b^2+ab,-ab]|=64 . then (ab+bc+ac) is

Prove that identities: |[-bc,b^2+bc,c^2+bc],[a^2+ac,-ac,c^2+ac],[a^2+ab,b^2+ab,-ab]|=(a b+b c+a c)^3

If Delta_n=|{:(a^(2)+n,ab,ac),(ab,b^(2)+n,bc),(ac,bc,c^(2)+n):}|,n in N and the equation x^(3)-lambdax^(2)+11x-6=0 has roots a,b,c where a,b,c are in AP. The value of sum_(r=1)^(30)((27Delta_(r)-Delta_(3r))/(27r^(2))) is

Prove that Delta = |{:(1,,1,,1),(a,,b,,c),(bc+a^(2),,ac+b^(2),,ab+c^(2)):}| = 2(a-b)(b-c)(c-a)

What is |{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}| equal to ?

If a+b+c=p and ab+bc+ac=q, find a^(2)+b^(2)+c^(2) .

Identify like terms in the following: abc, ab^(2)c, acb^(2), c^(2)ab, b^(2)ac, a^(2)bc, cab^(2)

Prove that |{:(a,,a^(2),,bc),(b ,,b^(2),,ac),( c,,c^(2),,ab):}| = |{:(1,,1,,1),(a^(2) ,,b^(2),,c^(2)),( a^(3),, b^(3),,c^(3)):}|

Prove that : |{:(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab):}|=(a-b)(b-c)(c-a)(ab+bc+ca)

If a-b-c= 3 and a^(2) + b^(2) + c^(2) = 77 , find: ab- bc+ ca