Home
Class 12
MATHS
Given the following two statements S(1...

Given the following two statements
`S_(1) : (p ^^ : p) rarr (p ^^ q)` is a tautology.
`S_(2) : (p vv : p) rarr (p vv q)` is a fallacy

A

`S_(1)` is true

B

`S_(2)` is true

C

Both `S_(1)` and `S_(2)` are true

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the two statements given: 1. **Statement S1**: \((p \land \neg p) \rightarrow (p \land q)\) 2. **Statement S2**: \((p \lor \neg p) \rightarrow (p \lor q)\) We will determine whether each statement is a tautology or a fallacy by constructing truth tables for both. ### Step 1: Analyze Statement S1 **Statement S1**: \((p \land \neg p) \rightarrow (p \land q)\) - **Truth Table Construction**: | p | ¬p | p ∧ ¬p | q | p ∧ q | (p ∧ ¬p) → (p ∧ q) | |-------|-------|--------|-------|-------|---------------------| | T | F | F | T | T | T | | T | F | F | F | F | T | | F | T | F | T | F | T | | F | T | F | F | F | T | - **Explanation**: - The column for \(p \land \neg p\) is always false (F) because \(p\) cannot be true and false at the same time. - Since \(p \land \neg p\) is false, the implication \((p \land \neg p) \rightarrow (p \land q)\) is always true (T) regardless of the truth values of \(p\) and \(q\). - **Conclusion**: Statement S1 is a tautology. ### Step 2: Analyze Statement S2 **Statement S2**: \((p \lor \neg p) \rightarrow (p \lor q)\) - **Truth Table Construction**: | p | ¬p | p ∨ ¬p | q | p ∨ q | (p ∨ ¬p) → (p ∨ q) | |-------|-------|--------|-------|-------|---------------------| | T | F | T | T | T | T | | T | F | T | F | T | T | | F | T | T | T | T | T | | F | T | T | F | F | F | - **Explanation**: - The column for \(p \lor \neg p\) is always true (T) because either \(p\) is true or \(\neg p\) is true. - The implication \((p \lor \neg p) \rightarrow (p \lor q)\) is false (F) when \(p\) is false and \(q\) is also false. - **Conclusion**: Statement S2 is a fallacy since it is not true in all cases. ### Final Conclusion - **S1** is a tautology. - **S2** is a fallacy.

To solve the problem, we need to analyze the two statements given: 1. **Statement S1**: \((p \land \neg p) \rightarrow (p \land q)\) 2. **Statement S2**: \((p \lor \neg p) \rightarrow (p \lor q)\) We will determine whether each statement is a tautology or a fallacy by constructing truth tables for both. ### Step 1: Analyze Statement S1 ...
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 3

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos
  • MOCK TEST 2

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION - 2)|10 Videos
  • MOCK TEST 4

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

(p ^^ ~q) ^^ (~p vv q) is

Show that (p^^q)vv(~p)vv(p^^~q) is a tautology

Let p and q be any two propositons Statement 1 : (p rarr q) harr q vv ~p is a tautology Statement 2 : ~(~p ^^ q) ^^ (p vv q) harr p is fallacy

Observe the following statements Statement - I : p vv ~(p ^^ q) is a tautology Statement - II : A statement pattern is called a tautology, if it is always true, whatever may be the true value of constitute statements.

The statement p vv q is

Write the duals of the following statements : (i) ( p vee q) vee r (ii) p ^^ q) ^^ r (iii) ( p vv q) ^^ (r vv s)

Verify that the statement P vee ~( p ^^ q) is a tautology.

Write the duals of the following statements : (i) [ ~ ( p vv q)] ^^ [ p vv { ~ q ^^ ~ s )}] (ii) ~ p vv [ ( ~q) vv ( p vv ~ q) vv ~r ]

The logical statement (p to q) vv (q to ~ p) is :

The negation of (~p ^^ q) vv (p ^^ ~ q) is