Home
Class 12
MATHS
f(x) = int(x^(2)+x+1)/(x+1+sqrt(x))dx, t...

`f(x) = int(x^(2)+x+1)/(x+1+sqrt(x))dx`, then f(1) =

A

`(7)/(6)`

B

`(2)/(3)`

C

`(11)/(6)`

D

`(5)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( f(x) = \int \frac{x^2 + x + 1}{x + 1 + \sqrt{x}} \, dx \) and then find \( f(1) \). ### Step-by-Step Solution: 1. **Rewrite the Integral**: We start with the integral: \[ f(x) = \int \frac{x^2 + x + 1}{x + 1 + \sqrt{x}} \, dx \] 2. **Factor the Numerator**: We can use the expansion formula mentioned in the video: \[ x^2 + x + 1 = (x + 1 + \sqrt{x})(x + 1 - \sqrt{x}) \] Thus, we can rewrite the integral as: \[ f(x) = \int \frac{(x + 1 + \sqrt{x})(x + 1 - \sqrt{x})}{x + 1 + \sqrt{x}} \, dx \] 3. **Cancel the Denominator**: The \( x + 1 + \sqrt{x} \) in the numerator and denominator cancels out: \[ f(x) = \int (x + 1 - \sqrt{x}) \, dx \] 4. **Integrate Each Term**: Now we can integrate each term separately: \[ f(x) = \int x \, dx + \int 1 \, dx - \int \sqrt{x} \, dx \] - The integral of \( x \) is \( \frac{x^2}{2} \). - The integral of \( 1 \) is \( x \). - The integral of \( \sqrt{x} \) is \( \frac{2}{3} x^{3/2} \). Thus, \[ f(x) = \frac{x^2}{2} + x - \frac{2}{3} x^{3/2} + C \] 5. **Evaluate \( f(1) \)**: Now we substitute \( x = 1 \): \[ f(1) = \frac{1^2}{2} + 1 - \frac{2}{3} \cdot 1^{3/2} \] Simplifying this gives: \[ f(1) = \frac{1}{2} + 1 - \frac{2}{3} \] Converting to a common denominator (6): \[ f(1) = \frac{3}{6} + \frac{6}{6} - \frac{4}{6} = \frac{5}{6} \] 6. **Final Answer**: Therefore, the value of \( f(1) \) is: \[ f(1) = \frac{5}{6} \]

To solve the problem, we need to evaluate the integral \( f(x) = \int \frac{x^2 + x + 1}{x + 1 + \sqrt{x}} \, dx \) and then find \( f(1) \). ### Step-by-Step Solution: 1. **Rewrite the Integral**: We start with the integral: \[ f(x) = \int \frac{x^2 + x + 1}{x + 1 + \sqrt{x}} \, dx ...
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 3

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos
  • MOCK TEST 2

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION - 2)|10 Videos
  • MOCK TEST 4

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

int(2x-1)/(sqrt(x^(2)-x-1))dx

If f(x)=int 2-(1)/(1+x^(2))-(1)/(sqrt(1+x^(2)))dx , then f is

Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is

Let f(x)=int(x^2dx)/((1+x^2)(1+sqrt(x^2+1)))a n df(0)=0. Then value of f(1) will be

If f:RtoR,f(x)=(sqrt(x^(2)+1)-3x)/(sqrt(x^(2)+1)+x) then find the range of f(x) .

If f(x)=int_((1)/(x))^(sqrt(x))cost^(2)dt(xgt0)" then "(df(x))/(dx) is

If int(1)/(x^(2)+2x+2)dx=f (x) +C , then f (x)=

Let f(x) =inte^x(x-1)(x-2)dx, then f(x) decrease in the interval

The value if int(x^(2)-1)/((x^(2)+1)(sqrt(x^(4)+1)))dx equal to (1)/(sqrt(2))sec^(-1)(f(x))+c , then f(x) is

If f'(x) = f(x)+ int _(0)^(1)f (x) dx and given f (0) =1, then int f (x) dx is equal to :