Home
Class 12
MATHS
If (x+sqrt(1+x^(2))) (y+sqrt(1+y^(2))) =...

If `(x+sqrt(1+x^(2))) (y+sqrt(1+y^(2))) =1` then `(dy)/(dx)` may be equals to

A

0

B

`-1`

C

1

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B

`x+sqrt(1+x^(2)) = (1)/(sqrt(1+y^(2))+y) = sqrt(1+y^(2))-y` ....(1)
`y+sqrt(1+y^(2)) = (1)/(sqrt(1+x^(2))+x) = sqrt(1+x^(2))-x` ....(2)
Adding (1) and (2) we get
`x + y = 0 rArr y - x`
`(dy)/(dx) = -1`
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 3

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos
  • MOCK TEST 2

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION - 2)|10 Videos
  • MOCK TEST 4

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

If x=sqrt(1-y^2) , then (dy)/(dx)=

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) , then (dy)/(dx) equals

sqrt(1+x^2)dy+sqrt(1+y^2)dx=0

(dy)/(dx)=(sqrt(x^(2)-1))/(sqrt(y^(2)-1))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If y=sqrt((1-x)/(1+x) then (dy)/(dx) equals

if y=sqrt(x) + 1/sqrt(x) , then (dy)/(dx) at x=1 is equal to

If x^(2)+y^(2)+z^(2)-2xyz=1 , then the value of (dx)/(sqrt(1-x^(2)))+(dy)/(sqrt(1-y^(2)))+(dz)/(sqrt(1-z^(2))) is equal to………..