Home
Class 12
MATHS
(1^(2)-2^(2)+3^(2)) + (4^(2)-5^(2)+6^(2)...

`(1^(2)-2^(2)+3^(2)) + (4^(2)-5^(2)+6^(2))+(7^(2)-8^(2)+9^(2))….30` terms

A

82395

B

80396

C

82389

D

82399

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression \((1^{2}-2^{2}+3^{2}) + (4^{2}-5^{2}+6^{2})+(7^{2}-8^{2}+9^{2})+\ldots\) up to 30 terms, we can break it down step by step. ### Step 1: Identify the Pattern The series can be grouped as follows: - The first group: \(1^2 - 2^2 + 3^2\) - The second group: \(4^2 - 5^2 + 6^2\) - The third group: \(7^2 - 8^2 + 9^2\) - And so on... Each group consists of three terms. The first term is a perfect square, the second term is subtracted, and the third term is added. ### Step 2: Calculate Each Group Using the difference of squares formula, \(a^2 - b^2 = (a-b)(a+b)\), we can simplify each group. For the first group: \[ 1^2 - 2^2 + 3^2 = 1 - 4 + 9 = 6 \] For the second group: \[ 4^2 - 5^2 + 6^2 = 16 - 25 + 36 = 27 \] For the third group: \[ 7^2 - 8^2 + 9^2 = 49 - 64 + 81 = 66 \] ### Step 3: Generalize the Group Calculation The \(n\)-th group can be represented as: \[ (3n-2)^2 - (3n-1)^2 + (3n)^2 \] Calculating this: \[ = (3n-2)^2 - (3n-1)^2 + (3n)^2 = [(3n-2) - (3n-1)][(3n-2) + (3n-1)] + (3n)^2 = (-1)(6n - 3) + 9n^2 = -6n + 3 + 9n^2 = 9n^2 - 6n + 3 \] ### Step 4: Sum the Groups Now, we need to sum this expression for \(n\) from 1 to 10 (since there are 30 terms and each group has 3 terms): \[ \sum_{n=1}^{10} (9n^2 - 6n + 3) \] ### Step 5: Calculate Each Part of the Sum 1. **Sum of \(n^2\)**: \[ \sum_{n=1}^{10} n^2 = \frac{10(10 + 1)(2 \cdot 10 + 1)}{6} = \frac{10 \cdot 11 \cdot 21}{6} = 385 \] 2. **Sum of \(n\)**: \[ \sum_{n=1}^{10} n = \frac{10(10 + 1)}{2} = 55 \] 3. **Constant Sum**: \[ \sum_{n=1}^{10} 3 = 3 \cdot 10 = 30 \] ### Step 6: Combine the Results Now substituting back: \[ = 9 \cdot 385 - 6 \cdot 55 + 30 = 3465 - 330 + 30 = 3465 - 300 = 3165 \] ### Final Answer The sum of the series is \(3165\).

To solve the given expression \((1^{2}-2^{2}+3^{2}) + (4^{2}-5^{2}+6^{2})+(7^{2}-8^{2}+9^{2})+\ldots\) up to 30 terms, we can break it down step by step. ### Step 1: Identify the Pattern The series can be grouped as follows: - The first group: \(1^2 - 2^2 + 3^2\) - The second group: \(4^2 - 5^2 + 6^2\) - The third group: \(7^2 - 8^2 + 9^2\) - And so on... ...
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 3

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos
  • MOCK TEST 2

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION - 2)|10 Videos
  • MOCK TEST 4

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

Sum to n terms the series (3)/(1 ^(2) . 2 ^(2)) + (5)/( 2 ^(2) . 3 ^(2)) + (7)/( 3 ^(2) . 4 ^(2)) +.............

The sum of series 1+6+(9(1^(2)+2^(2)+3^(2)))/(7) + (12(1^(2)+2^(2)+3^(2)+4^(2)))/(9)+(15(1^(2)+2^(2)+...+5^(2)))/(11)+... up to 15 terms is

The sum of the series 1+ 2/3+ (1)/(3 ^(2)) + (2 )/(3 ^(3)) + (1)/(3 ^(4)) + (2)/(3 ^(5)) + (1)/(3 ^(6))+ (2)/(3 ^(7))+ …… upto infinite terms is equal to :

Sum of the n terms of the series (3)/(1^(2))+(5)/(1^(2)+2^(2))+(7)/(1^(2)+2^(2)+3^(3))+"......." is

Evaluate lim_(x to sqrt(3)) (3x^(8) + x^(7) - 11x^(6) - 2x^(5) - 9x^(4) - x^(3) + 35x^(2) + 6x + 30)/(x^(5) - 2x^(4) + 4x^(2) - 9x + 6)

Simplify the following : 5x^(4) - 7x^(2) +8x - 1 +3x^(2) - 9x^(2) + 7 - 3x^(4)+11x - 2 +8x^(2)

1+(1)/(3.2^(2))+(1)/(5.2^(4))+(1)/(7.2^(6))+....=

Simplify: 2-3z^(2)+5yz+7y^(2)-8+z^(2)-6yz-9y^(2)+1-2z^(2)-2yz-y^(2)

Find sum of first 15 term of series 1+6+(9(1^2+2^2+3^2))/7+(12(1^2+2^2+3^2+4^2))/9+...... (1) 7620 (2) 7280 (3) 7820 (4) 7067

Prove that : Find the sum of the infinite series 1+(2)/(3).(1)/(2)+(2.5)/(3.6)((1)/(2))^(2)+(2.5.8)/(3.6.9)((1)/(2))^(3)+......oo