Home
Class 12
MATHS
(1+2x+3x^(2))^(15) = sum(r=0)^(30) a(r)x...

`(1+2x+3x^(2))^(15) = sum_(r=0)^(30) a_(r)x^(r)` then digit at the unit place of `a_(0) + a_(1) + a_(30)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the digit at the unit place of \( a_0 + a_1 + a_{30} \) from the expression \( (1 + 2x + 3x^2)^{15} = \sum_{r=0}^{30} a_r x^r \). ### Step-by-step Solution: 1. **Identify \( a_0 \)**: - \( a_0 \) is the constant term in the expansion of \( (1 + 2x + 3x^2)^{15} \). - When \( x = 0 \), the expression simplifies to \( (1 + 0 + 0)^{15} = 1^{15} = 1 \). - Thus, \( a_0 = 1 \). **Hint**: To find the constant term, substitute \( x = 0 \) in the expression. 2. **Identify \( a_1 \)**: - \( a_1 \) is the coefficient of \( x \) in the expansion. - To find \( a_1 \), we differentiate the expression and then substitute \( x = 0 \). - Differentiate \( (1 + 2x + 3x^2)^{15} \): \[ \frac{d}{dx}[(1 + 2x + 3x^2)^{15}] = 15(1 + 2x + 3x^2)^{14} \cdot (2 + 6x) \] - Now, substitute \( x = 0 \): \[ 15(1 + 0 + 0)^{14} \cdot (2 + 0) = 15 \cdot 1^{14} \cdot 2 = 30 \] - Thus, \( a_1 = 30 \). **Hint**: Differentiate the expression and evaluate at \( x = 0 \) to find the coefficient of \( x \). 3. **Identify \( a_{30} \)**: - \( a_{30} \) is the coefficient of \( x^{30} \). - The maximum degree of \( x \) in the expansion is \( 30 \), which occurs when we select \( 3x^2 \) from all \( 15 \) factors. - Therefore, \( a_{30} = 3^{15} \). **Hint**: To find the coefficient of the highest degree, consider the contributions from the terms that can yield that degree. 4. **Calculate \( a_0 + a_1 + a_{30} \)**: - Now we have: \[ a_0 = 1, \quad a_1 = 30, \quad a_{30} = 3^{15} \] - We need to find \( 3^{15} \) and its unit digit: - The unit digit of powers of \( 3 \) follows the pattern: \( 3, 9, 7, 1 \) (repeats every 4). - \( 15 \mod 4 = 3 \), so the unit digit of \( 3^{15} \) is \( 7 \). - Thus: \[ a_0 + a_1 + a_{30} = 1 + 30 + 7 = 38 \] 5. **Find the unit digit**: - The unit digit of \( 38 \) is \( 8 \). ### Final Answer: The digit at the unit place of \( a_0 + a_1 + a_{30} \) is \( 8 \).

To solve the problem, we need to find the digit at the unit place of \( a_0 + a_1 + a_{30} \) from the expression \( (1 + 2x + 3x^2)^{15} = \sum_{r=0}^{30} a_r x^r \). ### Step-by-step Solution: 1. **Identify \( a_0 \)**: - \( a_0 \) is the constant term in the expansion of \( (1 + 2x + 3x^2)^{15} \). - When \( x = 0 \), the expression simplifies to \( (1 + 0 + 0)^{15} = 1^{15} = 1 \). - Thus, \( a_0 = 1 \). ...
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 3

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos
  • MOCK TEST 2

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION - 2)|10 Videos
  • MOCK TEST 4

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

If (1-x-x^(2))^(20) = sum_(r=0)^(40)a_(r).x^(r ) , then value of a_(1) + 3a_(3) + 5a_(5) + "….." + 39a_(39) is

If (1 +x + x^(2) + …+ x^(9))^(4) (x + x^(2) + x^(3) + … + x^(9)) = sum_(r=1)^(45) a_(r) x^(r) and the value of a_(2) + a_(6) + a_(10) + … + a_(42) " is " lambda the sum of all digits of lambda is .

If (1+x+2x^(2))^(20) = a_(0) + a_(1)x^(2) "……" + a_(40)x^(40) , then find the value of a_(0) + a_(1) + a_(2) + "……" + a_(38) .

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of sum_(r=0)^(n)a_(r) is

Let (2x^(2)+3x+4)^(10)=sum_(r=0)^(20)a_(r )x^(r ) , then the value of (a_(7))/(a_(13)) is (a) 6 (b) 8 (c) 12 (d) 16

If n in N such that is not a multiple of 3 and (1+x+x^(2))^(n) = sum_(r=0)^(2n) a_(r ). X^(r ) , then find the value of sum_(r=0)^(n) (-1)^(r ).a_(r).""^(n)C_(r ) .

Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. The value of sum_(r=0)^(n-1) a_(r) is

Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. If n is even, the value of sum_(r=0)^(n//2-1) a_(2r) is

If (1 + x + x^(2) + x^(3))^(n)= a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n) , then the value of a_(0) + a_(4) +a_(8) + a_(12)+….. is