Home
Class 12
CHEMISTRY
Given that the standard reduction potent...

Given that the standard reduction potentials `E ^(0) of Fe^(+2)|Feis 0.26V and Fe ^(+3) |Fe is 0.76V` respectively. The `E ^(@)of Fe ^(+2)|Fe^(+3)` is:

A

`+1.76 V`

B

`-1.76 V`

C

`+0.182 V`

D

`-0.182 V`

Text Solution

Verified by Experts

The correct Answer is:
B

`Fe^(+2) + 2e^(-) rarr Fe " "Delta G_(1)^(@) = -2F xx 0.26` ....(i)
`Fe^(+3) + 3e^(-) rarr Fe " "Delta G_(2)^(@) = -3F xx 0.76` ...(ii)
`Fe^(+2) rarr Fe^(+3) + e^(-) " "Delta G_(3)^(@) = -1F xx E_(3)^(@)`
+ equation (i) - equation (2) = equation (3)
`Delta G_(1)^(@)-Delta G_(2)^(@) = Delta G_(3)^(@), " "-0.52F + 2.23 F = -F xx E_(3)^(@)`
`1.76 = -E_(3)^(@), " "E_(3)^(@) = -1.76 V`
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 11

    VMC MODULES ENGLISH|Exercise CHEMISTRY (Section-2)|5 Videos
  • MOCK TEST 10

    VMC MODULES ENGLISH|Exercise CHEMISTRY (SECTION 2)|5 Videos
  • MOCK TEST 12

    VMC MODULES ENGLISH|Exercise CHEMISTRY (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

The standard reduction potential for Zn^(2+)//Zn, Ni^(2+)//Ni and Fe^(2+)//Fe are -0.76, -0.23 and -0.44V respectively. The reaction X + Y^(2) rarr X^(2+) + Y will be spontaneous when:

What is the standard reduction potential (E^(@)) for Fe^(3+) to Fe ? Given that : Fe^(2+) + 2e^(-) to Fe, E_(Fe^(2+)//Fe)^(@) =-0.47V Fe^(3+) + e^(-) to Fe^(2+), E_(Fe^(3+)//Fe^(2+))^(@) = +0.77V

The standard electrode potentials (reduction) of Pt//Fe^(3+),Fe^(+2) and Pt//Sn^(4+),Sn^(+2) are +0.77V and 0.15V respectively at 25^(@)C . The standard EMF of the reaction Sn^(4+) +2Fe^(2+) rarr Sn^(2+) +2Fe^(3+) is

What is the standard reducing potential (E^(@)) for Fe^(3+)to Fe ? (Given that Fe^(2+)+2e^(-)rightarrowFe, E_(Fe^(2+)//Fe^(@)) =-0.47V Fe^(3+) + e^(-)to Fe^(2+) , E_(Fe^(3+)//Fe^(2+))^(@)= +0.77V

Calculate the euilibrium constant for the reaction, 2Fe^(3+) + 3I^(-) hArr 2Fe^(2+) + I_(3)^(-) . The standard reduction potential in acidic conditions are 0.77 V and 0.54 V respectivelu for Fe^(3+)//Fe^(2+) and I_(3)^(-)//I^(-) couples.

Standard reduction potential of I_(3)^(-), I^(-) and Fe^(3+), Fe^(2+) are 0.54 and 0.77 V , respectively . Calculate the equilibrium constant for the reaction. 2Fe^(3+) + 3I^(-)

The standard reduction potential data at 25^(@)C is given below E^(@) (Fe^(3+), Fe^(2+)) = +0.77V , E^(@) (Fe^(2+), Fe) = -0.44V , E^(@) (Cu^(2+),Cu) = +0.34V , E^(@)(Cu^(+),Cu) = +0.52 V , E^(@) (O_(2)(g) +4H^(+) +4e^(-) rarr 2H_(2)O] = +1.23V E^(@) [(O_(2)(g) +2H_(2)O +4e^(-) rarr 4OH^(-))] = +0.40V , E^(@) (Cr^(3+), Cr) =- 0.74V , E^(@) (Cr^(2+),Cr) = - 0.91V , Match E^(@) of the redox pair in List-I with the values given in List-II and select the correct answer using the code given below the lists: {:(List-I,List-II),((P)E^(@)(Fe^(3+),Fe),(1)-0.18V),((Q)E^(@)(4H_(2)O hArr 4H^(+)+4OH^(-)),(2)-0.4V),((R)E^(@)(Cu^(2+)+Curarr2Cu^(+)),(3)-0.04V),((S)E^(@)(Cr^(3+),Cr^(2+)),(4)-0.83V):} Codes:

The standard reduction potential data at 25^(@)C is given below E^(@) (Fe^(3+), Fe^(2+)) = +0.77V , E^(@) (Fe^(2+), Fe) = -0.44V , E^(@) (Cu^(2+),Cu) = +0.34V , E^(@)(Cu^(+),Cu) = +0.52 V , E^(@) (O_(2)(g) +4H^(+) +4e^(-) rarr 2H_(2)O] = +1.23V E^(@) [(O_(2)(g) +2H_(2)O +4e^(-) rarr 4OH^(-))] = +0.40V , E^(@) (Cr^(3+), Cr) =- 0.74V , E^(@) (Cr^(2+),Cr) = - 0.91V , Match E^(@) of the redox pair in List-I with the values given in List-II and select the correct answer using the code given below teh lists: {:(List-I,List-II),((P)E^(@)(Fe^(3+),Fe),(1)-0.18V),((Q)E^(@)(4H_(2)O hArr 4H^(+)+4OH^(+)),(2)-0.4V),((R)E^(@)(Cu^(2+)+Curarr2Cu^(+)),(3)-0.04V),((S)E^(@)(Cr^(3+),Cr^(2+)),(4)-0.83V):} Codes:

Given the standard oxidation potentials Fe overset(+0.4V)rarr Fe^(2+) (aq.) overset(-0.8V)rarr Fe^(3+) (aq.) Fe overset(+0.9V)rarr Fe(OH)_(2) overset(0.6V)rarr Fe(OH)_(3) It is easier to oxidise Fe^(2+) " to " Fe^(3+)in

Given E^(c-)._(Fe^(2+)|Fe) and E^(c-)._(Fe^(3+)|Fe^(2+)) are -0.44 and 0.77V respectively. If Fe^(2+),Fe^(3+) and Fe blocks are kept together, then