Home
Class 12
MATHS
If alpha, beta be roots of the equation ...

If `alpha, beta` be roots of the equation `375x ^(2) -25x-2=0 and s _(n) = alpha ^(n) +beta ^(n),` then `lim _( x to oo) lim _( x to oo) (sum _(r =1) ^(n ) S_(r))=`

A

`7/116`

B

`1/12`

C

`29/358`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

Since ` alpha, beta `are the roots of
`375x^2 - 25x -2 = 0 :. alpha + beta = 25/375 = 1/15`
and `alpha, beta - 2/375 :. lim_(nto oo)sum_(r=1)^n S_r = lim_(n tooo)sum_(r =1)^n (alpha^r +beta^r)`
`=(alpha + alpha^2 + alpha^3 +... ....oo) +(beta+beta^2 +beta^3 +.......oo)`
`=alpha/(1 -alpha) + beta/(1 -beta) = (alpha- alphabeta + beta - alphabeta)/((1-alpha)(1-beta))`
`=(alpha +beta- 2alphabeta)/(1 - (alpha+beta) + alphabeta) =(1/15 + 4/375)/(1 -1/15 - 2/375)`
`=(25 +4)/(375 - 25-2) =29/348 =1/12`
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 4

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 3

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos
  • MOCK TEST 5

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

if alpha , beta be roots of equation 375 x^2 -25 x -2 = 0 and s_n = alpha^n + beta^n then lim_(n->oo) (sum_(r=1)^n S_r) = .......

Let alpha and beta be the roots of the equation 5x^2+6x-2=0 . If S_n=alpha^n+beta^n, n=1,2,3.... then

If alpha, beta are roots of equation x^(2)-4x-3=0 and s_(n)=alpha^(n)+beta^(n), n in N then the value of (s_(7)-4s_(6))/s_(5) is

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

If alpha,beta are the roots of the equation x^2-2x+4=0 , find alpha^(n)+beta^(n) for (a) n=3k, k in N

If alpha , beta are the roots of the equation ax^(2)+bx+c=0 and S_(n)=alpha^(n)+beta^(n) , then aS_(n+1)+bS_(n)+cS_(n-1)=(n ge 2)

lf alpha and beta are the roots of the equation x^2-ax + b = 0 and A_n = alpha^n + beta^n , then which of the following is true ?

Let alpha and beta be the roots of the equation x^(2) -px+q =0 and V_(n) = alpha^(n) + beta^(n) , Show that V_(n+1) = pV_(n) -qV_(n-1) find V_(5)

If alpha and beta are roots of the equation x^(2)-3x+1=0 and a_(n)=alpha^(n)+beta^(n)-1 then find the value of (a_(5)-a_(1))/(a_(3)-a_(1))

lim_(nto oo) (1)/(n^(2))sum_(r=1)^(n) re^(r//n)=