Home
Class 12
MATHS
If f(x)={(((1-sin^(3)x))/(3cos^(2)x)",",...

If `f(x)={(((1-sin^(3)x))/(3cos^(2)x)",",x lt (pi)/(2)),(a",",x=(pi)/(2)),((b(1-sinx))/((pi-2x)^(2))",",x gt (pi)/(2)):}`
is continuous at `x=(pi)/(2)`, then the value of `((b)/(a))^(5//3)` is

Text Solution

Verified by Experts

The correct Answer is:
32

`LHL = RHL = f(pi/2) rArr lim_(x rarr (pi)/(2))f(x) = f(pi/2)=lim_(x rarr (pi^+)/(2)) f(x)`
`rArr lim_(h rarr o)f(pi/2 -h)=a=lim_(h rarr 0)f(pi/2 +h) rArr`
`lim_(h rarr 0) ((1-cos^3h))/(3 sin ^2h) = a= lim_(h rarr 0)(b(1-cosh))/(4h^2)`
`rArr lim_(h rarr 0)((1-cos h)(1+cos h +cos^2h))/(3(1-cos h)(1+cos h))=a=lim_(h rarr 0) (b(1-cos h))/(4h^2)`
`rArr (3)/(3(2)) = a = (b)/(8) or (b)/(a) = 8 therefore `
`(b/a)^(5//3) = (8)^(5//3) =2^5 = 32`
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 4

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 3

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos
  • MOCK TEST 5

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={{:(a,","x=(pi)/(2)),((sqrt(2x-pi))/(sqrt(9+sqrt(2x-pi))-b),","xgt(pi)/(2)):} . If f(x) is continuous at x=(pi)/(2) , then the value of (a^(2))/(5b) is

If f(x)={{:(mx+1",",xle(pi)/(2)),(sinx+n",",xge (pi)/(2)):} is continuous at x=(pi)/(2) , then

If f(x)=[{:(mx+1,if x le (pi)/(2)),(sinx+n,ifxgt(pi)/(2)):} is continuous at x = (pi)/(2) , then

f(x)={{:(((3)/(2))^((cot 3x)/(cot 2x)), 0 le xlt (pi)/(2)),(b+3, x =(pi)/(2)),( (1+|cotx|)^((a tan x|)/b), (pi)/(2) lt xlt pi):} is continuous at x= pi/2 , then

If f(x)={[(1-sin^2x)/(3cos^2x),xltpi/(2)],[a,x=pi/2],[(b(1-sinx))/((pi-2x)^2),x gtpi/2]} then f(x) is continuous at x=pi/2 ,if (a) a=1/3,b=2 (b) a=1/3,=8/3 (c) a=2/3,b=8/3 (d) none of these

If f(x)={m x+1,xlt=pi/2sinx+n ,x >pi/2 is continuous at x=pi/2, then

Let f(x)={(1-sin^3x)/(3cos^2x) if x pi/2 find a and b. .

Let f(0,pi) to R be defined as f(x)={{:(,(1-sinx)/((pi-2x)^(2)).(In sin x)/((In(1+pi^(2)-4pix+4x^(2)))),x ne (pi)/(2)),(,k,x=(pi)/(2)):} If a continuous at x=(pi)/(2) , then the value of 8sqrt|k|,is

Let f(x)={(sinx+cosx",",0 lt x lt (pi)/(2)),(a",",x=pi//2),(tan^(2)x+"cosec"x",",pi//2 lt x lt pi):} Then its odd extension is

If f(x)={((1-sin((3x)/2))/(pi-3x) , x != pi/2),(lambda , x=pi/2)) be continuous at x=pi/3 , then value of lamda is (A) -1 (B) 1 (C) 0 (D) 2