Home
Class 12
MATHS
Let f(x) be a differentiable function in...

Let f(x) be a differentiable function in the interval (0, 2) then the value of `int_(0)^(2)f(x)dx`

A

f( c) for some `c in (0,2)`

B

2f (c ) for some `c in (0,2)`

C

f.(c ) for some `c in (0,1) `

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

Let us consider a function `g(t) = int_0^t f(x)dx`
Now applying lagrange.s mean value theorem in (0,2)
` rArr (g(2) - g(0))/(2-0) = g.(c ) `, where `c in (0,2) rarr int_0^2 f(x)dx = 2f(c ) `, where `c in (0,2)`.
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 5

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 4

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 6

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a differentiable function symmetric about x=2 , then the value of int_(0)^(4)cos(pix)f'(x)dx is equal to________.

Let f(x) be a twice-differentiable function and f''(0)=2. Then evaluate lim_(xto0) (2f(x)-3f(2x)+f(4x))/(x^(2)).

Let f:R to R be a differentiable function such that f(2)=2 . Then, the value of lim_(xrarr2) int_(2)^(f(x))(4t^3)/(x-2) dt , is

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f(x) be a twice-differentiable function and f"(0)=2. The evaluate: ("lim")_(xvec0)(2f(x)-3f(2x)+f(4x))/(x^2)

Let f be a differentiable function such that f'(x) = f(x) + int_(0)^(2) f(x) dx and f(0) = (4-e^(2))/(3) . Find f(x) .

If f(x) is a continuous function in [0,pi] such that f(0)=f(x)=0, then the value of int_(0)^(pi//2) {f(2x)-f''(2x)}sin x cos x dx is equal to

Let f (x) be a twice differentiable function defined on (-oo,oo) such that f (x) =f (2-x)and f '((1)/(2 )) =f' ((1)/(4))=0. Then int _(-1) ^(1) f'(1+ x ) x ^(2) e ^(x ^(2))dx is equal to :

Let f(x) be a differentiable function and f(alpha)=f(beta)=0(alpha< beta), then the interval (alpha,beta)

Let f be a function defined on the interval [0,2pi] such that int_(0)^(x)(f^(')(t)-sin2t)dt=int_(x)^(0)f(t)tantdt and f(0)=1 . Then the maximum value of f(x) is…………………..