Home
Class 12
MATHS
If barb and barc are two non-collinear v...

If `barb` and `barc` are two non-collinear vectors, then number of solutions (x,y) in `x,yin[0,10]` satisfying the equation `baracdot[barb+barc]=5` and `baraxx(barbxxbarc)=(x^(2)-2x+7)barb+(siny)barc` is

A. one
B. Two
C. Zero
D> Infinite

A

one

B

two

C

zero

D

infinite

Text Solution

Verified by Experts

The correct Answer is:
B

`bara xx (barb xx barc) = (bara. ""barc)barb - (bara-barb).barc`
`implies bara-barc =x^2 - 2x + 7, bara .""barb=-siny`
`bara.(barb + barc) = 5`
`implies x^2 - 2x + 7 -siny=5`
`implies (x-1)^2 + 1 = sin y`
`x=1, y=(4n+1) (pi)/(2) = (pi)/(2),(5pi)/(2)`
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 5

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 4

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 6

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

If barb and barc are two non-collinear vectors, then number of solutions (x,y) in x,yin[0,10] satisfying the equation baracdot[barb+barc]=5 and baraxx(barbxxbarc)=(x^(2)-2x+7)barb+(siny)barc is A. one B. Two C. Zero D> Infinite

The number of values of yin[-2pi,2pi] satisfying the equation |sin2x|+|cos2x|=|siny| is 3 (b) 4 (c) 5 (d) 6

The number of values of yin[-2pi,2pi] satisfying the equation |sin2x|+|cos2x|=|siny| is 3 (b) 4 (c) 5 (d) 6

a and b are non-collinear vectors. If c=(x-2) a+b and d=(2x+1)a-b are collinear vectors, then find the value of x.

The number of solutions (x, y) where x and y are integers, satisfying 2x^(2) + 3y^(2) + 2x + 3y=10 is:

Number of solutions in the interval [0,2pi] satisfying the equation 8sin x=(sqrt(3))/(cos x)+1/(sin x) are a. 5 b. 6 c. 7 d. 8

The number of values of x in the in interval [0,5pi] satisfying the equation 3sin^2x-7sinx+2=0 is 0 (b) 5 (c) 6 (d) 10

The number of solutions of 3^(|x|)=| 2-|x|| , is A. 0 B. 2 C. 4 D. infinite

Find the number of pairs of integer (x , y) that satisfy the following two equations: {cos(x y)=x and tan(x y)=y (a) 1 (b) 2 (c) 4 (d) 6

the number of non-zero solutions of the equation x^2-5x-(sgn x)6=0 is.