Home
Class 12
MATHS
The value of int(-3)^(3)(ax^()+bx^(3)+cx...

The value of `int_(-3)^(3)(ax^()+bx^(3)+cx+k)dx`, where a,b,c,k are constants, depends only on. . . .

A

a and k

B

a and b

C

a, b and c

D

k

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-3}^{3} (ax + bx^3 + cx + k) \, dx \), we will follow these steps: ### Step 1: Break down the integral We can separate the integral into individual parts: \[ \int_{-3}^{3} (ax + bx^3 + cx + k) \, dx = \int_{-3}^{3} ax \, dx + \int_{-3}^{3} bx^3 \, dx + \int_{-3}^{3} cx \, dx + \int_{-3}^{3} k \, dx \] ### Step 2: Evaluate each integral 1. **For \( \int_{-3}^{3} ax \, dx \)**: \[ \int ax \, dx = \frac{a x^2}{2} \Big|_{-3}^{3} = \frac{a(3^2)}{2} - \frac{a(-3^2)}{2} = \frac{9a}{2} - \frac{9a}{2} = 0 \] 2. **For \( \int_{-3}^{3} bx^3 \, dx \)**: \[ \int bx^3 \, dx = \frac{b x^4}{4} \Big|_{-3}^{3} = \frac{b(3^4)}{4} - \frac{b(-3^4)}{4} = \frac{81b}{4} - \frac{81b}{4} = 0 \] 3. **For \( \int_{-3}^{3} cx \, dx \)**: \[ \int cx \, dx = \frac{c x^2}{2} \Big|_{-3}^{3} = \frac{c(3^2)}{2} - \frac{c(-3^2)}{2} = \frac{9c}{2} - \frac{9c}{2} = 0 \] 4. **For \( \int_{-3}^{3} k \, dx \)**: \[ \int k \, dx = kx \Big|_{-3}^{3} = k(3) - k(-3) = 3k + 3k = 6k \] ### Step 3: Combine the results Now, we combine the results of all the integrals: \[ \int_{-3}^{3} (ax + bx^3 + cx + k) \, dx = 0 + 0 + 0 + 6k = 6k \] ### Conclusion The value of the integral depends only on \( k \).

To solve the integral \( \int_{-3}^{3} (ax + bx^3 + cx + k) \, dx \), we will follow these steps: ### Step 1: Break down the integral We can separate the integral into individual parts: \[ \int_{-3}^{3} (ax + bx^3 + cx + k) \, dx = \int_{-3}^{3} ax \, dx + \int_{-3}^{3} bx^3 \, dx + \int_{-3}^{3} cx \, dx + \int_{-3}^{3} k \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 13

    VMC MODULES ENGLISH|Exercise MATHEMATICS( SECTION-2)|5 Videos
  • MOCK TEST 12

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 2

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION - 2)|10 Videos

Similar Questions

Explore conceptually related problems

The value of int_-3^3(a x^5+b x^3+c x+k)dx , where a, b, c and k are constants, depends only on

The value of int_(-2)^(2)(ax^(2011)+bx^(2001)+c)dx , where a , b , c are constants depends on the value of

The value of int_(-2)^(2) (ax^(3)+bx+c)dx depends on

Evaluate int_(1)^(4) (ax^(2)+bx+c)dx .

If int_0^3 (3ax^2+2bx+c)dx=int_1^3 (3ax^2+2bx+c)dx where a,b,c are constants then a+b+c=

int(ax^3+bx^2+cx+d)dx

If int_(-pi//3)^(pi//3) ((a)/(3)|tan x|+(b tan x)/(1+sec x)+c)dx=0 where a, b, c are constants, then c=

The value of int(x dx)/((x+3)sqrt(x+1) is (where , c is the constant of integration )

If y^(2) = ax^(2) + bx + c where a, b c are contants then y^(3)(d^(2)y)/(dx^(2))= ?

(-3x^(2) + 5x -2) -2(x^(2)-2x-1) If the expression above is rewritten in the form ax^(2) + bx +c , where a, b, and c are constants, what is the value of b ?