Home
Class 12
MATHS
If |(z-25)/(z-1)| = 5 , the value of |z...

If `|(z-25)/(z-1)| = 5 ` , the value of `|z|` is -

A

3

B

4

C

5

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \left| \frac{z - 25}{z - 1} \right| = 5 \), we will follow these steps: ### Step 1: Rewrite \( z \) Let \( z = x + iy \), where \( x \) and \( y \) are real numbers. Then, we can express the equation as: \[ \left| \frac{(x + iy) - 25}{(x + iy) - 1} \right| = 5 \] ### Step 2: Simplify the expression This can be rewritten as: \[ \left| \frac{(x - 25) + iy}{(x - 1) + iy} \right| = 5 \] ### Step 3: Use the modulus property Using the property of modulus, we have: \[ \frac{\sqrt{(x - 25)^2 + y^2}}{\sqrt{(x - 1)^2 + y^2}} = 5 \] ### Step 4: Cross-multiply Cross-multiplying gives: \[ \sqrt{(x - 25)^2 + y^2} = 5 \sqrt{(x - 1)^2 + y^2} \] ### Step 5: Square both sides Squaring both sides results in: \[ (x - 25)^2 + y^2 = 25((x - 1)^2 + y^2) \] ### Step 6: Expand both sides Expanding both sides, we get: \[ (x^2 - 50x + 625 + y^2) = 25(x^2 - 2x + 1 + y^2) \] ### Step 7: Rearranging the equation Rearranging gives: \[ x^2 - 50x + 625 + y^2 = 25x^2 - 50x + 25 + 25y^2 \] \[ x^2 - 50x + 625 + y^2 - 25x^2 + 50x - 25 - 25y^2 = 0 \] ### Step 8: Combine like terms Combining like terms results in: \[ -24x^2 - 24y^2 + 600 = 0 \] ### Step 9: Simplify the equation Dividing through by -24 gives: \[ x^2 + y^2 = 25 \] ### Step 10: Find \( |z| \) Since \( |z| = \sqrt{x^2 + y^2} \), we have: \[ |z| = \sqrt{25} = 5 \] ### Final Answer Thus, the value of \( |z| \) is \( 5 \). ---

To solve the equation \( \left| \frac{z - 25}{z - 1} \right| = 5 \), we will follow these steps: ### Step 1: Rewrite \( z \) Let \( z = x + iy \), where \( x \) and \( y \) are real numbers. Then, we can express the equation as: \[ \left| \frac{(x + iy) - 25}{(x + iy) - 1} \right| = 5 \] ...
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 13

    VMC MODULES ENGLISH|Exercise MATHEMATICS( SECTION-2)|5 Videos
  • MOCK TEST 12

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 2

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION - 2)|10 Videos

Similar Questions

Explore conceptually related problems

If z is a complex number satisfying the equaiton z^(6) - 6z^(3) + 25 = 0 , then the value of |z| is

If |z +1| = z + 2(1 - i) , then the value of z

(4+z-(3+2z))/(6) =(-z -3 (5-2))/(7) What is the value of z in the equation above ?

If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|

If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|

If z, z _1 and z_2 are complex numbers such that z = z _1 z_2 and |barz_2 - z_1| le 1 , then maximum value of |z| - Re(z) is _____.

If (z-1)/(z+1) is a purely imaginary number (z ne - 1) , then find the value of |z| .

If z + z^(-1)= 1 , then find the value of z^(100) + z^(-100) .

For a complex number Z, if arg Z=(pi)/(4) and |Z+(1)/(Z)|=4 , then the value of ||Z|-(1)/(|Z|)| is equal to

Given that 1 + 2|z|^(2) = |z^(2) + 1|^(2) + 2 | z + 1 | ^(2) , then the value of |z(z + 1 )| is ______.