Home
Class 12
MATHS
If f'(x)=(1)/((1+x^(2))^(3//2)) and f(0)...

If `f'(x)=(1)/((1+x^(2))^(3//2))` and `f(0)=0,` then `f(1)` is equal to :

A

`sqrt2`

B

`-1/(sqrt(2))`

C

`1/(sqrt(2))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the function \( f(x) \) given its derivative \( f'(x) = \frac{1}{(1+x^2)^{3/2}} \) and the condition \( f(0) = 0 \). We will then evaluate \( f(1) \). ### Step-by-Step Solution: 1. **Integrate \( f'(x) \)**: \[ f(x) = \int f'(x) \, dx = \int \frac{1}{(1+x^2)^{3/2}} \, dx \] 2. **Use a trigonometric substitution**: Let \( x = \tan(\theta) \). Then, \( dx = \sec^2(\theta) \, d\theta \) and \( 1 + x^2 = \sec^2(\theta) \). Substituting these into the integral gives: \[ f(x) = \int \frac{\sec^2(\theta)}{(\sec^2(\theta))^{3/2}} \, d\theta = \int \frac{\sec^2(\theta)}{\sec^3(\theta)} \, d\theta = \int \cos(\theta) \, d\theta \] 3. **Integrate \( \cos(\theta) \)**: \[ f(x) = \sin(\theta) + C \] 4. **Convert back to \( x \)**: Since \( \theta = \tan^{-1}(x) \), we have: \[ \sin(\theta) = \frac{x}{\sqrt{1+x^2}} \] Therefore, \[ f(x) = \frac{x}{\sqrt{1+x^2}} + C \] 5. **Use the initial condition \( f(0) = 0 \)**: \[ f(0) = \frac{0}{\sqrt{1+0^2}} + C = 0 \implies C = 0 \] Thus, we have: \[ f(x) = \frac{x}{\sqrt{1+x^2}} \] 6. **Evaluate \( f(1) \)**: \[ f(1) = \frac{1}{\sqrt{1+1^2}} = \frac{1}{\sqrt{2}} \] ### Final Answer: \[ f(1) = \frac{1}{\sqrt{2}} \]

To solve the problem, we need to find the function \( f(x) \) given its derivative \( f'(x) = \frac{1}{(1+x^2)^{3/2}} \) and the condition \( f(0) = 0 \). We will then evaluate \( f(1) \). ### Step-by-Step Solution: 1. **Integrate \( f'(x) \)**: \[ f(x) = \int f'(x) \, dx = \int \frac{1}{(1+x^2)^{3/2}} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 13

    VMC MODULES ENGLISH|Exercise MATHEMATICS( SECTION-2)|5 Videos
  • MOCK TEST 12

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 2

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION - 2)|10 Videos

Similar Questions

Explore conceptually related problems

If f'(x)=(dx)/((1+x^(2))^(3//2)) and f(0)=0. then f(1) is equal to

If f(x)=int(3x^4-1)/(x^4+x+1)^2dx and f(0)=0 , then f(-1)= …

If f(x)=int(x^(2)+sin^(2)x)/(1+x^(2))sec^(2)xdx and f(0)=0, then f(1)=

If f(x)=int(x^(2)+sin^(2)x)/(1+x^(2))sec^(2)xdx and f(0)=0, then f(1)=

Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is

if f(x)=e^(-1/x^2),x!=0 and f (0)=0 then f'(0) is

Let f(x) is a cubic polynomial with real coefficients, x in R such that f''(3)=0 , f'(5)=0 . If f(3)=1 and f(5)=-3 , then f(1) is equal to-

If f(x)-3f((1)/(x))=2x+3(x ne 0) then f(3) is equal to

Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)),(x ne 0) then f(x) equals

Let f(x) be a polynomial of degree 2 satisfying f(0)=1, f(0) =-2 and f''(0)=6 , then int_(-1)^(2) f(x) is equal to