Home
Class 12
MATHS
sin 12^(@) sin 48^(@) sin 54^(@) is equa...

`sin 12^(@) sin 48^(@) sin 54^(@)` is equal to

A

`(1)/(16)`

B

`(1)/(32)`

C

`(1)/(8)`

D

`(1)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin 12^\circ \sin 48^\circ \sin 54^\circ \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \sin 12^\circ \sin 48^\circ \sin 54^\circ \] We can multiply and divide by 2: \[ = \frac{1}{2} \cdot 2 \sin 12^\circ \sin 48^\circ \sin 54^\circ \] ### Step 2: Use the sine product identity Using the identity \( 2 \sin A \sin B = \cos(A - B) - \cos(A + B) \), we can apply this to \( 2 \sin 12^\circ \sin 48^\circ \): \[ = \frac{1}{2} \left( \cos(12^\circ - 48^\circ) - \cos(12^\circ + 48^\circ) \right) \sin 54^\circ \] ### Step 3: Simplify the cosine terms Calculating the angles: \[ 12^\circ - 48^\circ = -36^\circ \quad \text{and} \quad 12^\circ + 48^\circ = 60^\circ \] Thus, we have: \[ = \frac{1}{2} \left( \cos(-36^\circ) - \cos(60^\circ) \right) \sin 54^\circ \] Using the property \( \cos(-x) = \cos(x) \): \[ = \frac{1}{2} \left( \cos(36^\circ) - \cos(60^\circ) \right) \sin 54^\circ \] ### Step 4: Substitute known values We know that: \[ \cos(60^\circ) = \frac{1}{2} \] Now substituting this in: \[ = \frac{1}{2} \left( \cos(36^\circ) - \frac{1}{2} \right) \sin 54^\circ \] ### Step 5: Simplify further Now, we can express \( \sin 54^\circ \) as \( \cos(36^\circ) \) because \( \sin(90^\circ - x) = \cos(x) \): \[ = \frac{1}{2} \left( \cos(36^\circ) - \frac{1}{2} \right) \cos(36^\circ) \] This simplifies to: \[ = \frac{1}{2} \left( \cos^2(36^\circ) - \frac{1}{2} \cos(36^\circ) \right) \] ### Step 6: Substitute the value of \( \cos(36^\circ) \) The value of \( \cos(36^\circ) \) is known to be \( \frac{\sqrt{5} + 1}{4} \): \[ = \frac{1}{2} \left( \left(\frac{\sqrt{5} + 1}{4}\right)^2 - \frac{1}{2} \cdot \frac{\sqrt{5} + 1}{4} \right) \] ### Step 7: Calculate \( \left(\frac{\sqrt{5} + 1}{4}\right)^2 \) Calculating: \[ \left(\frac{\sqrt{5} + 1}{4}\right)^2 = \frac{5 + 2\sqrt{5} + 1}{16} = \frac{6 + 2\sqrt{5}}{16} = \frac{3 + \sqrt{5}}{8} \] Now substituting back: \[ = \frac{1}{2} \left( \frac{3 + \sqrt{5}}{8} - \frac{\sqrt{5} + 1}{8} \right) \] This simplifies to: \[ = \frac{1}{2} \cdot \frac{(3 + \sqrt{5}) - (\sqrt{5} + 1)}{8} = \frac{1}{2} \cdot \frac{2}{8} = \frac{1}{8} \] ### Final Answer Thus, the value of \( \sin 12^\circ \sin 48^\circ \sin 54^\circ \) is: \[ \boxed{\frac{1}{8}} \]

To find the value of \( \sin 12^\circ \sin 48^\circ \sin 54^\circ \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \sin 12^\circ \sin 48^\circ \sin 54^\circ \] We can multiply and divide by 2: ...
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 13

    VMC MODULES ENGLISH|Exercise MATHEMATICS( SECTION-2)|5 Videos
  • MOCK TEST 12

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 2

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION - 2)|10 Videos

Similar Questions

Explore conceptually related problems

The value of sin 10^(@) sin 30^(@) sin 50^(@) sin 70^(@) is equal to .

Sin 300^(@) is equal to

Value of (4\ sin 9^@ sin 21^@ sin 39^@ sin 51^@ sin 69^@ sin 81^@)/(sin 54^@) is equal to

Value of (2sin9^(@)sin 21^(@)sin 39^(@)sin 51^(@)cos21^(@)sin 81^(@))/(sin54^(@)) is equal to:-

sin 12 ^(@) sin 48^(@) sin 54 ^(@) = (1)/(8).

The value of sin50^(@) - sin70^(@)+sin10^(@) is equal to

If A=sqrt(3) cot 20^(@) - 4 cos20^(@) and B= sin12^(@) sin48^(@) sin54^(@) be such that A + lambdaB=2 , then the value of lambda^(3) +2000 is …………….

sin65^(@)+sin43^(@)-sin29^(@)-sin7^(@) is equal to

The smallest positive value of x (in degrees) for whichcos tanx=(cos5^@ cos 20^@ + cos 35^@ cos 50^@-sin 50^@ sin 20^@ - sin35^@ sin50^@)/(sin5^@ cos 20^@ - sin 35^@ cos 50^@ + cos 5^@ sin 20^@ - cos 35^@ sin 50^@) is equal to

((sin 33^(@))/( sin 11^(@) sin 49^(@) sin 71^(@)))^(2) + (( cos 33^(@))/(cos 11^(@) cos 49^(@) cos 71^(@)))^(2) is equal to ______.