Home
Class 12
MATHS
If the eccentricites of the ellipse x^(2...

If the eccentricites of the ellipse `x^(2)/4+y^(2)/3=1` and the hyperbola `x^(2)/64-y^(2)/b^(2)=1` are reciprocals of each other, then `b^(2)` is equal to

A

192

B

64

C

16

D

32

Text Solution

Verified by Experts

The correct Answer is:
A

`because " Eccentricity of ellipse "=sqrt(1-(b^(2))/(a^(2)))=sqrt(1-(3)/(4))=(1)/(2)`
`therefore" Eccentricity of hyperbola "=2" "rArr" "sqrt(1+(b^(2))/(64))rArr 2" "rArr" "4=1+(b^(2))/(64)rArr 192=b^(2)`
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 13

    VMC MODULES ENGLISH|Exercise MATHEMATICS( SECTION-2)|5 Videos
  • MOCK TEST 12

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 2

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION - 2)|10 Videos

Similar Questions

Explore conceptually related problems

If e_(1) and e_(2) are the eccentricities of the ellipse (x^(2))/(18)+(y^(2))/(4)=1 and the hyperbola (x^(2))/(9)-(y^(2))/(4)=1 respectively and (e_(1), e_(2)) is a point on the ellipse 15x^(2)+3y^(2)=k , then the value of k is equal to

The ellipse (x^(2))/(25)+(y^(2))/(16)=1 and the hyperbola (x^(2))/(25)-(y^(2))/(16) =1 have in common

If the foci of the ellips (x^(2))/( 25)+ ( y^(2))/( 16) =1 and the hyperbola (x^(2))/(4) - ( y^(2))/( b^(2) ) =1 coincide ,then b^(2)=

Find the eccentricity of the ellipse (i) (x^(2))/(16)+(y^(2))/(9)=1 (ii) (x^(2))/(64)+(y^(2))/(36)=1

if the tangents on the ellipse 4x^(2)+y^(2)=8 at the points (1,2) and (a,b) are perpendicular to each other then a^(2) is equal to

If the eccentricities of the two ellipse (x^(2))/(169)+(y^(2))/(25)=1 and (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 and equal , then the value (a)/(b) , is

If the eccentricity of the hyperbola (x^(2))/(16)-(y^(2))/(b^(2))=-1 is (5)/(4) , then b^(2) is equal to

If the foci of the ellipse (x^2)/(16)+(y^2)/(b^2)=1 and the hyperbola (x^2)/(144)-(y^2)/(81)=1/(25) coincide, then find the value

If the foci of the ellipse (x^2)/(16)+(y^2)/(b^2)=1 and the hyperbola (x^2)/(144)-(y^2)/(81)=1/(25) coincide, then find the value of b^2

If the foci of the ellipse (x^2)/(16)+(y^2)/(b^2)=1 and the hyperbola (x^2)/(144)-(y^2)/(81)=1/(25) coincide write the value of b^2dot