Home
Class 12
MATHS
The range of the function f(x)=cos^(2)x ...

The range of the function `f(x)=cos^(2)x -5 cosx -9` is :

A

`[-13, 3]`

B

`[0, 3]`

C

`[-13,-3]`

D

`[-13,-9]`

Text Solution

Verified by Experts

The correct Answer is:
C

`f(x) =cos^(2)x -5 cosx -9`
`= (cos^(2)x -5 cos x +(25)/(4)) -9-(25)/(4)`
`=(cosx -(5)/(2))^(2) -(61)/(4) " " ….(i)`
where `(9)/(4) le (cosx -(5)/(2))^(2) le (49)/(4) " " …(ii)`
`:.` from (i) and (ii) `-13 le f(x) le -3`
`rArr` Range of `f(x) in [-13-3]`
Promotional Banner

Similar Questions

Explore conceptually related problems

The range of the function f(x)=5-4x-x^(2) is

The range of the function f(x)=(x+1)/(x-2) is

The range of the function f(x)=(5)/(3-x^(2)) is

The range of the function f(x)=x^2+1/(x^2+1) is

The range of the function f(x)=x^2+1/(x^2+1) is

Find the range of the function f(x)=4cos^(3)x-8cos(2)x+1 .

Find the range of the function f(x)=x^2-2x-4.

The range of the function f(x) = 3x^2+7x+10 is

Range of the function f(x)=2+|x^(2)+1| is

The range of the function f(x)=3|sin x|-2|cos x| is :