Home
Class 12
MATHS
y=sqrt(x^2+1) - log(1/x+sqrt(1+1/(x^2)))...

`y=sqrt(x^2+1) - log(1/x+sqrt(1+1/(x^2)))`, find `dy/dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= log (x+sqrt(x^2-1)) , then dy/dx=

If y=log(x+sqrt(x^(2)-1)), then (dy)/(dx)=

If y = log (x + sqrt(x^(2)+1) then dy/dx =

If y=log((x^2+x+1)/(x^2-x+1))+2/(sqrt(3))t a n^(-1)((sqrt(3)x)/(1-x^2)), find (dy)/(dx)

If y=log(x^(2)+x+1)/(x^(2)-x+1)+(2)/(sqrt(3))tan^(-1)((sqrt(3)x)/(1-x^(2))), find (dy)/(dx)

If y=tan^(-1) ((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))), x^2 le 1 , then find (dy)/(dx)

If y = log sqrt((1 + cos^2 x)/(1 - e^(2x))), find (dy)/(dx) .

If y= (sqrt(x) + 1/sqrt(x))^2 .Find dy/(dx)

y= tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))) , where -1 < x < 1 , find dy/dx

y= tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))) , where -1 < x < 1 , find dy/dx