Home
Class 12
MATHS
If z1,z2,z3 are any three roots of the e...

If `z_1,z_2,z_3` are any three roots of the equation `z^6=(z+1)^6,` then `arg((z_1-z_3)/(z_2-z_3))` can be equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_1,z_2,z_3 are vertices of a triangle such that |z_1-z_2|=|z_1-z_3| then arg ((2z_1-z_2-z_3)/(z_3-z_2)) is :

let z_1,z_2,z_3 and z_4 be the roots of the equation z^4 + z^3 +2=0 , then the value of prod_(r=1)^(4) (2z_r+1) is equal to :

If z_(1),z_(2),z_(3),z_(4) are the roots of equation z^(4)+z^(3)+z^(2)+z+1=0, then prod_(i=1)^(4)(z_(i)+2)

If z_(1),z_(2),z_(3),z_(4) are the roots of the equation z^(4)+z^(3)+z^(2)+z+1=0, then the least value of [|z_(1)+z_(2)|]+1 is (where [.] is GIF.)

If A(z_(1)),B(z_(2)), C(z_(3)) are the vertices of an equilateral triangle ABC, then arg (2z_(1)-z_(2)-z_(3))/(z_(3)_z_(2))=

If z_1,z_2,z_3 be the vertices of an equilateral triangle, show that 1/(z_1-z_2)+1/(z_2-z_3)+1/(z_3-z_1)= 0 or z_1^2+z_2^2+z_3^2= z_1z_2+z_2z_3+z_3z_1 .

If z_(1),z_(2),z_(3),z_(4) are two pairs of conjugate complex numbers, then arg(z_(1)/z_(3)) + arg(z_(2)/z_(4)) is