Home
Class 12
MATHS
Solve the inequality (tan^(-1)x)^(2)-4ta...

Solve the inequality `(tan^(-1)x)^(2)-4tan^(-1)x+3>0` for x.

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the inequality tan^(-1)xgtcot^(-1)cot^(-1)x .

The solution of the inequality (tan^(-1)x)^(2)-3tan^(-1)x+2>=0 is

The largest integral value of x satisfying the inequality (tan^(-1)(x))^(2)-4(tan^(-1)(x))+3gt0 is :

Solve the inequality: tan x lt 2

Solve the inequality (x-1)/(x^(2)-4x+3)<1

The solution of the inequality (tan^(-1)x)^(2)-3tan^(-1)x+2>=0 is- a.(-oo,tan1]uu[tan2,oo)b*(-oo,tan1] c.(-oo,-tan1]uu[tan2,oo)d.[-1,1]-(-(sqrt(2))/(2),(sqrt(2))/(2))

The values of x satisfying the inequality [tan^(-1)x]^(2)-[tan^(-1)x]-2<=0 is (1.] denotes G.I.F.)

Solve the equation tan^(-1)2x+tan^(-1)3x=(pi)/(4)

Solve the following system of inequations: 4(tan^(-1)x)^(2)-8tan^(-1)x+3 =0

Solve the equation tan^(-1) 2x + tan^(-1) 3x = pi//4