Home
Class 11
MATHS
int(1)^(a)(ln t)/(t)dt...

`int_(1)^(a)(ln t)/(t)dt`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

If f(x)=int_(1)^(x)(ln t)/(1+t)dt where x>0, then the values of of ^(1) satisfying the equation f(x)+f((1)/(x))=2 is

For x>0, let f(x)=int_(1)^(x)(log t)/(1+t)dt. Find the function f(x)+f((1)/(x)) and find the value of f(e)+f((1)/(e))

If F(x)=int_(1)^(x)(ln t)/(1+t+t^(2))dt then F(x)=-F((1)/(x))

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

Let F(x)=f(x)+f((1)/(x)), where f(x)=int_(t)^(x)(log t)/(1+t)dt (1) (1)/(2)(2)0(3)1(4)2

Find the value of the function f(x)=1+x+int_(1)^(x)((ln t)^(2)+2ln t)dt where f'(x) vanishes

2int_(0)^(t)(1-cos t)/(t)dt

Let F (x) = f(x) + f ((1)/(x)), where f (x) = int _(1) ^(x ) (log t)/(1+t) dt. Then F (e) equals

I=int_(0)^(-1)(t ln t)/(sqrt(1-t^(2)))dt=