Home
Class 12
MATHS
Let f(x)=x^3+ax^2+bx+5sin^2x be an incre...

Let `f(x)=x^3+ax^2+bx+5sin^2x` be an increasing function in the set of real numbers `R` Then `a` and `b` satisfy the condition

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=x^(3)+ax^(2)+bx+5 sin^(2)x be an increasing function on the set R. Then,

IF f(x)=x^(3)+ax^(2)+bx+5sin^(2)x is a strictly increasing function on the set of real numbers then a and b must satisfy the relation a^(2)-3b+15<=0 (b) a^(2)-3b+20<=0a^(2)-3b+25<=0 (d) a^(2)-3b+30<=0

Let f (x) = x ^(3) + ax ^(2) + bx + 5 sin ^2 theta + c be can increasing function of x (theta is a parameter), Then, a and b satisfy the condition:

Leg f(x)=x^(3)+ax^(2)+bx+5sin^(2)x be an increasing function on the set R. Then find the condition on a and b.

Let f(x)=x^(3)+kx^(2)+5x+4sin^(2)x be an increasing function on x in R. Then domain of k is

condition that f(x)=x^(3)+ax^(2)+bx^(2)+c is anincreasing function for all real values of x' is

Let f(x)=2x^(3)+ax^(2)+bx-3cos^(2)x is an increasing function for all x in R such that ma^(2)+nb+18 lt 0 then the value of m+n+7 is

Let f(x)=sin ax+cos bx be a periodic function,then