Home
Class 11
MATHS
Let (x+5)^(30)+(x-5)^(30) = a(0)+a(1)x+a...

Let `(x+5)^(30)+(x-5)^(30) = a_(0)+a_(1)x+a_(2)x^(2)+...+a_(30)x^(30)` for all `x in R` then `(a_(2))/(a_(0))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let (x+10)^(50)+(x-10)^(50)=a_(0)+a_(1)x+a_(2)x^(2)+...+a_(50)x^(50) for all x in R , then (a_(2))/(a_(0)) is equal to

Let (x + 10)^(50) + (x - 10)^(50) = a_(0) + a_(1) x + a_(2)X^(2) + ….. + a_(50) x^(50) , for all x in R , then (a_(2))/(a_(0)) is equal to

(1+x+x^(2))^(9)=a_(0)+a_(1)x+a_(2)x^(2)+....+a_(18)x^(18)

If (2+x+x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2)+......+a_(20)x^(20) then (a_(1)-a_(0))/(a_(20))=

If (1+x+x^(2)+x^(3))^(100)=a_(0)+a_(1)+a_(2)x^(2)+......+a_(300)x^(300) then

If (1+2x+3x^(2) )^(10) = a_(0) + a_(1) x + a_(2) x^(2) +…+a_(20) x^(20) , then

If (1+kx)^(10)=a_(0)+a_(1)x+a_(2)x^(2)+....+a_(10)x^(10) and a_(2)+(7)/(5)a_(1)+1=0 then k=

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of (a_(39))/(a_(40)) , is

(1+x)^(n)=a_(0)+a_(1)x+a_(2)*x^(2)+......+a_(n)x^(n) then prove that

Let (1 + x)^(36) = a_(0) +a_(1) x + a_(2) x^(2) +...+ a_(36)x^(36) . Then Statememt-1: a_(0) +a_(3) +a_(6) +…+a_(36)= (2)/(3) (2^(36) +1) Statement-2: a_(0) + a_(2) +a_(4) +…+ a_(36) = 2^(35)