Home
Class 13
MATHS
Let f : R to R is a function defined as ...

Let `f : R to R` is a function defined as `f(x)` where `= {(|x-[x]| ,:[x] "is odd"),(|x - [x + 1]| ,:[x] "is even"):}`
[.] denotes the greatest integer function, then `int_(-2)^(4) dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=[2x], where [.] denotes the greatest integer function,then

If f(x) = [x] - [x/4], x in R where [x] denotes the greatest integer function, then

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

Let f : R->R be given by f(x) = {|x-[x]|, when [x] is odd and |x-[x]-1| , when [x] is even ,where [.] denotes the greatest integer function , then int_-2^4 f(x) dx is equal to

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

If f(x)=(x-[x])/(1-[x]+x), where [.] denotes the greatest integer function,then f(x)in: