Home
Class 12
MATHS
If f(x)=int(x)^(x+1) (e^-(t^2)) dt, the...

If `f(x)=int_(x)^(x+1) (e^-(t^2)) dt,` then the interval in which `f(x)` is decreasing is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_(x^(2))^(x^(2)+1)e^(-t^(2))dt , then find the interval in which f(x) increases.

If f(x)=int_(0)^(x)log_(0.5)((2t-8)/(t-2))dt , then the interval in which f(x) is increasing is

If f(x)= int_(x^2)^(x^(2) +4) e^(-t^(2) ) dt , then the function f(x) increases in

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

If f(x)=int_(0)^(x)e^(-t)f(x-t)dt then the value of f(3) is

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

f(x) = int_(x)^(x^(2))(e^(t))/(t)dt , then f'(t) is equal to :

Let f(x) = int_(-2)^(x)|t + 1|dt , then