Home
Class 11
MATHS
Let D=|(10!,11!,12!),(11!,12!,13!),(12!,...

Let `D=|(10!,11!,12!),(11!,12!,13!),(12!,13!,14!)|` then `D/((10!)^(3)-260` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

Let N=|(10!,11!,12!),(11!,12!,13!),(12!,13!,14!)| Then N/((10!)(11!)(12!))= ______

if D=det[[10!,11!,12!11!,12!,13!12!,13!,14!]] then (D)/((10!)^(3))-4 is:

Evaluate: o+=det[[10!,11!,12!11!,12!,13!12!,13!,14!]]

Evaluate: =|10!11!12!11:12!13!12!13!14!

If D=|[10!,11!,12!],[11!,12!,13!],[12!,13!,14!]| then k/3, where k is the total number of positive divisors of (D)/((10!)^(3))-4 is

The value of the determinant |(10!,11!,12!),(11!,12!,13!),(12!,13!,14!)| , is

{:(8,7,10,12),(13,12,15,17),(10,9,?,14):}

{:(9,11,13),(13,15,17),(10,12,14),(14,16,18),(11,13,?):}