Home
Class 12
MATHS
If alpha,beta be the roots of ax^(2)+bx+...

If `alpha,beta` be the roots of `ax^(2)+bx+c=0,c!=0`, `alpha+beta=(-b)/(a)` and `alpha beta=(c)/(a)`, then `alpha^(3)+beta^(3)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta be the roots of ax^(2)+bx+c=0,c!=0 , alpha+beta=(-b)/(a) and alpha beta=(c)/(a) ,then Q: (1)/(alpha^(2))+(1)/(beta^(2))

If alpha,beta are the roots of ax^(2)+bx+c-0 then alpha beta^(2)+alpha^(2)beta+alpha beta=

If alpha,beta are the roots of ax^(2)+2bx+c=0 then (alpha)/(beta)+(beta)/(alpha)=

If alpha,beta are roots of ax^(2)+bx+c=0 then (1)/(alpha)+(1)/(beta) =

If alpha, beta are the roots of the equation ax^(2)+bx+c=0 , a!=0 then alpha+beta =

If alpha, beta are the roots of ax^(2)+bx+c=0 then (1)/(alpha^(3))+(1)/(beta^(3)) =

If alpha and beta are roots of ax^(2)-bx+c=0 then calculate alpha+beta.