Home
Class 11
MATHS
" If "alpha,beta" are roots of "ax^(2)+b...

`" If "alpha,beta" are roots of "ax^(2)+bx+c=0,a!=0" then the value of "(a^(2)+beta^2)/(alpha^(-2)+beta^(-2))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of ax^(2)+bx+c=0 then the value ((alpha)/(beta)-(beta)/(alpha))^(2) is ...

If alpha,beta are the roots of ax^(2)+bx+c=0 then those of ax^(2)+2bx+4c=0 are

If alpha and beta are roots of ax^(2) + bx + c = 0 , then find the value of a((alpha^(2) + beta^(2))/(beta alpha)) + b((alpha)/(beta) + (beta)/(alpha))

37. If alpha and beta are the roots of ax^(2)+bx+c=0, then the value of (a alpha+b)^(-2)+(a beta+b)^(-2) is equal to

if alpha and beta are the roots of ax^(2)+bx+c=0 then the value of {(1)/(a alpha+b)+(1)/(a beta+b)} is

If alpha and beta are roots of ax^(2)-bx+c=0 then calculate alpha+beta.