Home
Class 11
MATHS
Prove that tan^(-1)1+tan^(-1)(1/2)+tan^(...

Prove that `tan^(-1)1+tan^(-1)(1/2)+tan^(-1)(1/3)=pi/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that tan^(-1)(1)+tan^(-1)(2)+tan^(-1)(3)=pi

Prove that: tan^(-1)1+tan^(-1)2+tan^(-1)3=pi

Prove that tan^(-1)1+tan^(-1)2+tan^(-1)3=pi

Prove that tan ^(-1)(1/5) + tan^(-1)(1/7) +tan^(-1)(1/3)+ tan ^(-1)(1/8) = pi/4

Prove that : tan^(-1)1+tan^(-1)2+tan^(-1)3=pi

tan^(-1)2-tan^(-1)1=tan^(-1)((1)/(3))

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

tan^(-1)2-tan^(-1)1=tan^(-1)(1)/(3)

Prove that : tan^(-1) 1 + tan^(-1) 2 + tan^(-1) 3= pi = 2(tan^(-1) 1 + tan^(-1)((1)/(2)) + tan^(-1)( (1)/(3)))

Prove that- tan^-1(1/2)+tan^-1(1/5)+tan^-1(1/8)=pi/4