Home
Class 11
MATHS
The point of intersection of bar(r)=bar(...

The point of intersection of `bar(r)=bar(a)+s((bar(b)+bar(c))/(2)-bar(a)),bar(r)=bar(b)+t((bar(c)+bar(a))/(2)-bar(b))` where `bar(a),bar(b),bar(c)` ,are position vectors of the vertices of a triangle

Promotional Banner

Similar Questions

Explore conceptually related problems

([[bar(a),bar(b),bar(c)]])/([[bar(b),bar(a),bar(c)]]) =

(bar(a)+2bar(b)-bar(c))*(bar(a)-bar(b))xx(bar(a)-bar(bar(c)))=

(bar(a)-bar(d))*(bar(b)-bar(c))+(bar(b)-bar(d))*(bar(c)-bar(a))+(bar(c)-bar(d))*(bar(a)-bar(b))=

If |bar(a)|=|bar(b)|=|bar(c)|=2 and bar(a).bar(b)=bar(b).bar(c)=bar(c).bar(a)=2 then [bar(a) bar(b) bar(c)] equal to

(bar(a)+bar(b))xx(bar(a)-bar(b))+(bar(b)-bar(c))xx(bar(b)-bar(c))+(bar(c)+bar(a))(bar(c)-bar(a))=

If bar(c)=3bar(a)-2bar(b) , then prove that [bar(a)bar(b)bar(c)]=0 .

If [bar(a)+2bar(b)2bar(b)+bar(c)5bar(c)+bar(a)]=k[bar(a)bar(b)bar(c)]

(bar(a)+bar(b))xx(bar(a)-bar(b))+(bar(b)+bar(c))xx(bar(b)-bar(c))+(bar(c)+bar(a))xx(bar(c)-bar(a))=

If bar(a)+2bar(b)+3bar(c)=bar(0) then bar(a)xxbar(b)+bar(b)xxbar(c)+bar(c)xxbar(a)=

If bar(c) = 3 bar(a) - 2 bar(b) then prove that [(bar(a),bar(b),bar(c))] = 0