Home
Class 11
MATHS
If A=[[x,1],[1,0]] and A=A^(-1), then x=...

If `A=[[x,1],[1,0]]` and `A=A^(-1),` then `x=`

Promotional Banner

Similar Questions

Explore conceptually related problems

if A=[[x,0],[-1,2x]] and A^-1 =[[1,0],[1/2,1/2]] then x is equal to (i) -2 (ii)-1 (iii)1 (iv)2

If A=[(2x,0),(x,x)] and A^(-1)=[(1,0),(-1,2)] then x equals to

If A=[(x,0),(1,1)]andB=[(1,0),(5,1)] find x such that A^(2)=B .

If f(x)={x+1-1<=x<=0 and x^(2)+10

f(x)={x-1,-1<=x<=0 and x^(2),0<=x<=1 and g(x)=sin x Find h(x)=f(|g(x)|)+|f(g(x))|.

If the matrix A=[[2-x,1,1],[1,3-x,0],[-1,-3,-x]] is singular,then what is the solution set S?

If f(x)=|(x,1,1),(0, 1+x, 1),(-x^2, 1+x, 1+x)| , then 1/10^4 f(100) is equal to

If f(x)= {(([x]-1)/(x-1), x ne 1),(0, x=1):} then f(x) is

Let f(x)={x-1,-1<=x<0 and x^(2),0<=x<=1,g(x)=sin x and h(x)=f(|g(x)|)+[f(g(x)) Then