Home
Class 12
MATHS
If omega is cube root of unit, then find...

If `omega` is cube root of unit, then find the value of determinant `|(1,omega^3,omega^2), (omega^3,1,omega), (omega^2,omega,1)|.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is a cube root of unity,then find the value of the following: (1+omega-omega^(2))(1-omega+omega^(2))

If omega is a complex cube root of unity then the value of the determinant |[1,omega,omega+1] , [omega+1,1,omega] , [omega, omega+1, 1]| is

If omegais an imaginary cube root of unity, then the value of the determinant |(1+omega,omega^2,-omega),(1+omega^2,omega,-omega^2),(omega+omega^2,omega,-omega^2)|

If omega is the cube root of unity then find the value of |[1,omega^(6),omega^(8)],[omega^(6),omega^(3),omega^(7)],[omega^(8),omega^(7),1]|

If omega is an imaginary cube root of unity, then the value of |(1,omega^(2),1-omega^(4)),(omega,1,1+omega^(5)),(1,omega,omega^(2))| is

If omega is a cube root of unity,then find the value of the following: (1-omega)(1-omega^(2))(1-omega^(4))(1-omega^(8))

If omega is a cube root of unity, then for polynomila is |(x + 1,omega,omega^(2)),(omega,x + omega^(2),1),(omega^(2),1,x + omega)|

If omega is an imaginary cube root of unity,then find the value of (1+omega)(1+omega^(2))(1+omega^(3))(1+omega^(4))(1+omega^(5))......(1+omega^(3n))=