Home
Class 11
MATHS
If f(x) is defined for x in [-3,5] ,then...

If f(x) is defined for x in [-3,5] ,then the domain of `f([|x|])` (where [.] is the greatest integer function) is

Promotional Banner

Similar Questions

Explore conceptually related problems

If domain of f(x) is [-1,2] then domain of f(x]-x^(2)+4) where [.] denotes the greatest integer function is

If f(x)=[2x], where [.] denotes the greatest integer function,then

If the domain of y=f(x) is [-3,2] ,then find the domain of g(x)=f(||x]|), wher [] denotes the greatest integer function.

If domain of y=f(x) is [-4,3], then domain of g(x)=f(|x]|) is,where [.] denotes greatest integer function

The domain of f(x)=log_(e)(4[x]-x) ; (where [1 denotes greatest integer function) is

Domain of f(x)=sqrt([x]-1+x^(2)); where [.] denotes the greatest integer function,is

If domain of y=f(x is x in[-3,2], then domain of y=f([x] : (where [] denotes greatest integer function) (A) [-3,2], (B) [-2,3] (C) [-3,3], (D) [-2,3]

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

Let f(x)=|x|+[x-1], where [ . ] is greatest integer function , then f(x) is

The domain of f(x)=sqrt([x]^(2)-7[x]+12) (where [.] denotes greatest integer function) is