Similar Questions
Explore conceptually related problems
Recommended Questions
- Let f(2)=4,f'(2)=4 .Then Lt(x rarr2)(xf(2)-2f(x))/(x-2) is :
Text Solution
|
- If f(2)=2 and f^(prime)(2)=1, then find (lim)(x->2)(xf(2)-2f(x))/(x-2)
Text Solution
|
- if f(2)=4,f'(2)=1 then lim(x rarr2)(xf(2)-2f(x))/(x-2)
Text Solution
|
- if f(2)=4,f'(2)=1 then lim(x rarr2)(xf(2)-2f(x))/(x-2)
Text Solution
|
- Let f(2)=4 and f'(2)=4. Then lim(x rarr2)(xf(2)-2f(x))/(x-2) is equal ...
Text Solution
|
- If f(2)=4 and f^(prime)(2)=1 , then find (lim)(x->2)(x\ f(2)-2f\ (x))/...
Text Solution
|
- माना f(2)=4 तथा f'(2)=4, तब lim(xto2)(xf(2)-2f(x))/(x-2) का मान है :
Text Solution
|
- If f(2)=4,f'(2)=4, then evalute lim(xto2)(xf(2)-2f(x))/(x-2).
Text Solution
|
- यदि f(2) = 4, f'(2) = 4, तब lim.(x rarr 2) (xf(x) - 2f(x))/(x-2) का मा...
Text Solution
|