Home
Class 11
MATHS
Let f(2)=4,f'(2)=4 .Then Lt(x rarr2)(xf(...

Let `f(2)=4,f'(2)=4` .Then `Lt_(x rarr2)(xf(2)-2f(x))/(x-2)` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(2)=4 and f'(2)=4. Then lim_(x rarr2)(xf(2)-2f(x))/(x-2) is equal to

if f(2)=4,f'(2)=1 then lim_(x rarr2)(xf(2)-2f(x))/(x-2)

if f(2)=4,f'(2)=1 then lim_(x rarr2)(xf(2)-2f(x))/(x-2)

lim_(x rarr2)(f(x)-f(2))/(x-2)=

If f(2)=4 and f'(2)=1, then find (lim)_(x rarr2)(xf(2)-2f(x))/(x-2)

If f(2)=2 and f'(2)=1, then find lim_(x rarr2)(xf(2)-2f(x))/(x-2)

If f(2)=2,f'(2)=1. then lim_(x rarr2)(2x^(2)-4f(x))/(x-2)=(i)-4(ii)-2(iii)2(iv)

f(x) is differentiable function at x=a such that f'(a)=2 , f(a)=4. Find lim_(xrarra) (xf(a)-af(x))/(x-a)