Home
Class 11
MATHS
sin^(-1)[x sqrt(1-x) - sqrtx sqrt(1-x^2)...

`sin^(-1)[x sqrt(1-x) - sqrtx sqrt(1-x^2)]=`

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]=

Find (dy)/(dx), if y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]

The value of sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))] is equal to

(d)/(dx)[sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))] is

int_(0)^(1)sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))dx

1/(sqrt(x+1) - sqrtx)

1/(sqrt(x+1) - sqrtx)

(sin^(-1)x)/(sqrt(1-x^(2))

sin^(-1)(x^(2)sqrt(1-x^(2))+x sqrt(1-x^(4))), write simplest from

inte^(sin^(-1)x)((x+sqrt(1-x^2))/(sqrt(1-x^2)))dx=