Home
Class 11
MATHS
If (1+x)^n=C0+C1x+C2x2++Cn x^n , n in N...

If `(1+x)^n=C_0+C_1x+C2x2++C_n x^n , n in N ,t h e nC_0-C_1+C_2-+(-1)^(n-1)C_(m-1),` is equal to `(mltn)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x)^n=C_0+C_1x+C_2 x^2+...+C_n x^n , n in N ,then C_0-C_1+C_2-.....+(-1)^(n-1)C_(m-1), is equal to (mltn)

If quad (1+x)^(n)=C_(0)+C_(1)x+C2x2++C_(n)x^(n),n in N,thenC_(0)-C_(1)+C_(2)-+(-1)^(n-1)C_(m-) is equal to (m

If (1+x)^n = C_0 +C_1x+C_2x^2+……… +C_nx^n , then prove that : C_1 -2C_2+………….+(-1)^(n-1)nC_n =0

If (1+x)^n = C_0 + C_1 x + C_2x^2 + …………+C_n x^n , find the value of C_0 - 2C_1 + 3C_2 - ……….+ (-1)^n (n+1) C_n

If (1+x)^n=c_0+C_1x+C_2x^2++C_n x^n , using derivtives prove t h a t C_1-2C_2+3C_3++(-1)^(n-1)nC_n=0

If (1+x)^n=c_0+C_1x+C_2x^2++C_n x^n , using derivtives prove t h a t C_1-2C_2+3C_3++(-1)^(n-1)nC_n=0

If (1+x)^n=C_0+C_1x+C_2x^2+…..+C_nx^n .then show that C_1+2C_2+…. nC_n=n.2^(n-1) .

If (1+x)^n = C_0 + C_1 x+ C_2 x^2 + ….....+ C_n x^n, then C_0+2. C_1 +3. C_2 +….+(n+1) . C_n=