Home
Class 11
MATHS
If (d^2y)/(dx^(2))=xe^x then (d^(3)y)/(d...

If `(d^2y)/(dx^(2))=xe^x` then `(d^(3)y)/(dx^(3))`=.....

Promotional Banner

Similar Questions

Explore conceptually related problems

y=x^(3)-4x^(2)+5 . Find (dy)/(dx) , (d^(2) y)/(dx^(2)) and (d^(3)y)/(dx^(3)) .

If y=x^(4) , find (d^(2)y)/(dx^(2))and(d^(3)y)/(dx^(3)) .

Order and degree of the differential equation (d^(2)y)/(dx^(2))+(dy)/(dx)+x=sqrt(1+(d^(3)y)/(dx^(3))) respectively are

find order and degree [(d^(3)y)/(dx^(3)) +x]^(5/2) = (d^(2)y)/(dx^(2))

Order and degree of the differential equation ((d^(2)y)/(dx^(2)))^(5)+ (4 ((d^(2)y)/(dx^(2)))^(3))/((d^(3)y)/(dx^(3))) + (d^(3)y)/(dx^(3)) = x^(2) - 1 respectively are

If y= x^(3)log x,then ( d^(2)y)/(dx^(2)) =

If y=x^3 then (d^2y)/(dx^2) is..

If x=log pandy=(1)/(p), then (a) (d^(2)y)/(dx^(2))-2p=0 (b) (d^(2)y)/(dx^(2))+y=0 (c) (d^(2)y)/(dx^(2))+(dy)/(dx)=0( d) (d^(2)y)/(dx^(2))-(dy)/(dx)=0

If y= x ^(3) +5x^(2) -3x +10 ,then (d^(2)y)/(dx^(2))=

What is the degree of differential equation (d^(3)y)/(dx^(3)) + ((dy)/(dx))^(2) - x^(2) "" (d^(2) y)/(dx^(2)) = 0