Home
Class 12
MATHS
Let f: R rarr R be a function defined as...

Let `f: R rarr R` be a function defined as `f(x)=[(x+1)^2]^(1/3)+[(x-1)^2]^(1/3)+x/(2^x-1)+x/2+1`

A

Even

B

Odd

C

Neither even nor odd

D

Even and odd both

Text Solution

Verified by Experts

The correct Answer is:
A

`f(x)=[(x+1)^(2)]^(1//3) +[(x-1)^(2)]^(1//3)+(x)/(2^(x)-1)+(x)/(2)+1`
`f(-x)=[(-x+1)^(2)]^(1//3) +[(-x-1)^(2)]^(1//3)+ ((-x))/(2^(-x)-1)+((-x))/(2)+1`
`f(x)-f(-x)=[(x+1)^(2)]^(1//3)+[(x-1)^(2)]^(1//3)-[(x-1)^(2)]^(1//3)=(x)/(2^(x)-1) +(x.2^(x))/(1-2^(x))+x`
`-[(x+1)^(2)]^(1//3) +(x)/(2^(x)-1) +(x)/(2^(x)-1)+(x)/(2) +1 +(x)/(2^(-x)-1) +(x)/(2)-1`
`=x[(1)/(2^(x)-1) -(2^(x))/(2^(x)-1)]+x`
`=x[(1-2^(x))/(2^(x)-1)]+x`
`= -x[(2^(x)-1)/(2^(x)-1)] +x=0`
`:. f(x)-f(-x)=0`. Hence function is even.
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:R rarr R be a function defined by f(x)=(x^(2)+2x+5)/(x^(2)+x+1) is

Let f:R rarr R be the function defined by f(x)=x^(3)+5 then f^(-1)(x) is

Let f:R rarr R be a function is defined by f(x)=x^(2)-(x^(2))/(1+x^(2)), then

let f:R rarr R be a continuous function defined by f(x)=(1)/(e^(x)+2e^(-x))

Let f:R rarr R be a function given by f(x)=x^(2)+1. Find: f^(-1){-5}

Let f:A rarr B be a function defined as f(x)=(x-1)/(x-2), where A=R-{2 ) and x-2B=R-{1} .Then f s:

The function f:R rarr R defined as f(x)=(x^(2)-x+1)/(x^(2)+x+1) is

Let f:R rarr R be defined by f(x)=(x)/(x^(2)+1) Then (fof(1) equals

If f:R rarr[-1, 1] be a function defined as f(x)=sin((x^(2)-8)/(x^(2)+2)) , then f is