Home
Class 11
MATHS
Let f be a real valued function satisfyi...

Let f be a real valued function satisfying `f(x+y)=f(x)f(y) ` for all `x, y in R ` such that f(1)=2 .
If ` sum_(k=1)^(n)f(a+k)=16(2^(n)-1) `, then a=

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a real valued function satisfying f(x+y)=f(x)f(y) for all x, y in R such that f(1)=2 . Then , sum_(k=1)^(n) f(k)=

Let f be a real valued function satisfying f(x+y)=f(x)+f(y) for all x, y in R and f(1)=2 . Then sum_(k=1)^(n)f(k)=

Let f be a real valued function, satisfying f (x+y) =f (x) f (y) for all a,y in R Such that, f (1_ =a. Then , f (x) =

f(x) is a real valued function, satisfying f(x+y)+f(x-y)=2f(x).f(y) for all yinR , Then

If f is a function satisfying f(x+y)=f(x)xx f(y) for all x,y in N such that f(1)=3 and sum_(x=1)^(n)f(x)=120 find the value of n

If a real valued function f(x) satisfies the equation f(x+y)=f(x)+f(y) for all x,y in R then f(x) is

If f is a function satisfying f(x+y)=f(x)f(y) for all x ,""""y in X such that f(1)=3 and sum_(x=1)^nf(x)=120 , find the value of n.

Let f be a function satisfying f(x+y)=f(x)+f(y) for all x,y in R. If f(1)=k then f(n),n in N is equal to

Let be a real function satisfying f(x)+f(y)=f((x+y)/(1-xy)) for all x ,y in R and xy ne1 . Then f(x) is

A real valued function f(x) is satisfying f(x+y)=yf(x)+xf(y)+xy-2 for all x,y in R and f(1)=3, then f(11) is