Home
Class 12
MATHS
For all n in N, cos theta cos 2theta cos...

For all `n in N, cos theta cos 2theta cos 4theta ....cos2^(n-1)theta` equals to

A

`(sin2^(n)theta)/(2^(n)sintheta)`

B

`(sin2^(n)theta)/(sintheta)`

C

`(cos2^(n)theta)/(2^(n)cos2theta)`

D

`(cos2^(n)theta)/(2^(n)sin2theta)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that for all \( n \in \mathbb{N} \): \[ \cos \theta \cos 2\theta \cos 4\theta \ldots \cos 2^{n-1}\theta = \frac{\sin 2^n \theta}{2^n \sin \theta} \] we will use mathematical induction. ### Step 1: Base Case Let's start with \( n = 1 \): \[ \cos \theta = \frac{\sin 2^1 \theta}{2^1 \sin \theta} = \frac{\sin 2\theta}{2 \sin \theta} \] Using the identity \( \sin 2\theta = 2 \sin \theta \cos \theta \): \[ \frac{\sin 2\theta}{2 \sin \theta} = \frac{2 \sin \theta \cos \theta}{2 \sin \theta} = \cos \theta \] Thus, the base case holds true. ### Step 2: Inductive Step Assume the statement is true for \( n = k \): \[ \cos \theta \cos 2\theta \cos 4\theta \ldots \cos 2^{k-1}\theta = \frac{\sin 2^k \theta}{2^k \sin \theta} \] Now we need to prove it for \( n = k + 1 \): \[ \cos \theta \cos 2\theta \cos 4\theta \ldots \cos 2^{k-1}\theta \cos 2^k\theta \] Using the inductive hypothesis, we can write: \[ = \frac{\sin 2^k \theta}{2^k \sin \theta} \cos 2^k \theta \] Now, we can express \( \cos 2^k \theta \) using the identity \( \sin 2\theta = 2 \sin \theta \cos \theta \): \[ = \frac{\sin 2^k \theta}{2^k \sin \theta} \cdot \cos 2^k \theta = \frac{\sin 2^k \theta \cdot \cos 2^k \theta}{2^k \sin \theta} \] Using the identity \( \sin 2\theta = 2 \sin \theta \cos \theta \): \[ = \frac{\sin(2 \cdot 2^k \theta)}{2 \cdot 2^k \sin \theta} = \frac{\sin 2^{k+1} \theta}{2^{k+1} \sin \theta} \] Thus, the statement holds for \( n = k + 1 \). ### Conclusion By the principle of mathematical induction, the statement is true for all \( n \in \mathbb{N} \): \[ \cos \theta \cos 2\theta \cos 4\theta \ldots \cos 2^{n-1}\theta = \frac{\sin 2^n \theta}{2^n \sin \theta} \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • MATHEMATICAL REASONING

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos

Similar Questions

Explore conceptually related problems

Solve cos theta+cos 2theta+cos 3theta=0 .

If (2^n+1)theta=pi then 2^n costheta cos2theta cos2^2 theta .......cos 2^(n-1) theta=

costheta+cos2theta+cos3theta+.......+cos(n-1)theta+cosntheta=

Using induction, prove that cos theta · cos 2theta · cos 2^2 theta. ... cos 2^(n-1) theta =(sin2^n theta)/(2^n sin theta)

solve cos^(2)theta+cos theta=1

Prove that cos theta cos 2 theta cos 4 theta…. Cos 2 ^(n-1) theta = ( sin ( 2 ^(n) theta))/( 2 ^(n) (sin theta)) .

If theta = (pi)/(2 ^(n) +1) prove that 2 ^(n) cos theta cos 2 theta cos 2 ^(2) theta…. Cos 2 ^(n -1) theta =1

cos 2 theta in terms of cos 4 theta,

Find the value of cos theta. cos 2theta. cos 2^(2)theta . cos 2^(3)theta"……." cos 2^(n-1) theta is

If sin theta+sin2theta+sin3theta=sin alpha and cos theta+cos 2theta+cos3theta=cos alpha , then theta is equal to

OBJECTIVE RD SHARMA ENGLISH-MATHEMATICAL INDUCTION -Exercise
  1. n^(th) term of the series 4+14+30+52+ .......=

    Text Solution

    |

  2. 3 + 13 + 29 + 51 + 79+… to n terms =

    Text Solution

    |

  3. Find the sum of the following series to n term: 1^3+3^3+5^3+7^3+ dot

    Text Solution

    |

  4. If 10^(n)+3*4^(n+2) + is divisible by 9, for all ninN, then the least ...

    Text Solution

    |

  5. If x^n-1 is divisible by x-k then the least positive integral value of...

    Text Solution

    |

  6. If a,b are distinct rational numbers, then for all n in N the number a...

    Text Solution

    |

  7. If n is an odd positive integer, then a^(n)+b^(n) is divisible by

    Text Solution

    |

  8. If n is an even positive integer, then a^(n)+b^(n) is divisible by

    Text Solution

    |

  9. For all n in N, (n^(5))/(5)+(n^(3))/(3)+(7n)/(15) is

    Text Solution

    |

  10. The sum of n terms of the series 1+(1+a)+(1+a+a^(2))+(1+a+a^(2)+a^(...

    Text Solution

    |

  11. If 3+5+9+17+33+… to n terms =2^(n+1)+n-2, then nth term of LHS, is

    Text Solution

    |

  12. Using mathematical induction , to prove that 7^(2n)+2^(3n-3). 3^(...

    Text Solution

    |

  13. Prove that for n in N ,10^n+3. 4^(n+2)+5 is divisible by 9 .

    Text Solution

    |

  14. For each n in N, n(n+1) (2n+1) is divisible by

    Text Solution

    |

  15. The sum of the cubes of three consecutive natural numbers is divisible...

    Text Solution

    |

  16. ((n+2)!)/((n-1)!) is divisible by

    Text Solution

    |

  17. For all n in N, n^(4) is less than

    Text Solution

    |

  18. For all n in N, 1 + 1/(sqrt(2))+1/(sqrt(3))+1/(sqrt(4))++1/(sqrt(n))

    Text Solution

    |

  19. For all n in N, Sigma n

    Text Solution

    |

  20. For all n in N, cos theta cos 2theta cos 4theta ....cos2^(n-1)theta eq...

    Text Solution

    |