Home
Class 12
MATHS
(1/(1!)+(1)/(2!)+(1)/(4!)+(1)/(6!)+…)-(1...

`(1/(1!)+(1)/(2!)+(1)/(4!)+(1)/(6!)+…)-(1/(1/(1)+(1)/(3!)+(1)/(5!)+…))` is equal to

A

e+1

B

`(e-1)/(e+1)`

C

e-1

D

none of these

Text Solution

Verified by Experts

We have
`(e+e^(-1))/(2)=1+(1)/(2!)+(1)/(4!)+(1)/(6!)`……
and `(e-e^(-1))/(2)=(1)/(1!)+(1)/(3!)+(1)/(5!)+(1)/(7!)`+….
`therefore ((1)/(2!)+(1)/(4!)+(1)/(6!))/(1+(1)/(3!)+(1)/(5!))+…..=(e+e^(-01))/(2)-(1)/(e-e^(-1)/(2))=((e-1)^(2))/(e^(2)-1)=(e-1)/(e+1)`
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|26 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

((1 )/(2!) + (1)/(4!) + (1)/(6!) + ......)/((1)/(1!) + (1)/(3!) + (1)/(5!) + ......)=

The sum of the series 1 + (1)/(1!) ((1)/(4)) + (1.3)/(2!) ((1)/(4))^(2) + (1.3.5)/(3!) ((1)/(4))^(3)+ ... to infty , is

(1/(1!) +1/(2!) +1/(3!) + .....oo) (1/(2!) -1/(3!) +1/(4!)-1/(5!) .....oo)

(1)/(1.2)+(1)/(3.4)+(1)/(5.6)+....

(1/(2!)+1/(4!)+1/(6!)+ ....oo)/(1+1/(3!)+1/(5!)+....oo)

1/2(1/2+1/3)-1/4((1)/(2^(2))+(1)/(3^(2)))+1/6((1)/(2^(3))+(1)/(3^(3)))+…infty is equal to

(1)/(4)+(1)/(3)((1)/(4))^(3)+(1)/(5)((1)/(4))^(5)+…..oo=…….

(1)/(2)((1)/(5)+(1)/(7))-(1)/(4)((1)/(5^(2))+(1)/(7^(2)))+(1)/(6)((1)/(5^(3))+(1)/(7^(3)))-….oo=

2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x + 1)^(5)) + …] is equal to ,

(1/5^-2 -1/4^-3 )x -1/2^-4 is equal to

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Chapter Test
  1. (1/(1!)+(1)/(2!)+(1)/(4!)+(1)/(6!)+…)-(1/(1/(1)+(1)/(3!)+(1)/(5!)+…)) ...

    Text Solution

    |

  2. The series expansion of log{(1+x)^(1+x)(1-x)^(1-x)} is

    Text Solution

    |

  3. 2log x-log(x+1)-log(x-1) is equals to

    Text Solution

    |

  4. The coefficient of x^(n) in the expansion of log(e)(1+3x+2x^2) is

    Text Solution

    |

  5. If x ne 0 then the sum of the series 1+(x)/(2!)+(2x^(2))/(3!)+(3x^(3...

    Text Solution

    |

  6. If log(1-x+x^(2))=a(1)x+a(2)x^(2)+a(3)x^(3)+…and n is not a mutiple of...

    Text Solution

    |

  7. If log(1-x+x^(2))=a(1)x+a(2)x^(2)+a(3)x^(3)+… then a(3)+a(6)+a(9)+.....

    Text Solution

    |

  8. The coefficient of x^(n) in the expansion of log(a)(1+x) is

    Text Solution

    |

  9. The coeffiecent of n^(-r) in the expansion of log(10)((n)/(n-1)) is

    Text Solution

    |

  10. The sum of the series (x-1)/(x+1)+1/2(x^(2)-1)/(x+1)^(2)+1/3(x^(3)-1...

    Text Solution

    |

  11. The sum of series 2[ 7^(-1)+3^(-1).7^(-3)+5^(-1).7^(-5)+...] is

    Text Solution

    |

  12. The coefficient of x^(6) in the expansion of log{(1+x)^(1+x)(1-x)^(...

    Text Solution

    |

  13. The sum of the series 1/2x^2+2/3x^3+3/4x^4+4/5x^5+... is :

    Text Solution

    |

  14. If x,y,z are three consecutive positive integers and X-Z + 2 = 0, then...

    Text Solution

    |

  15. The sum of the series ((1)^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+(...

    Text Solution

    |

  16. The value of 1-log(e)2+(log(e)2)^(2)/(2!)-(log(e)2)^(3)/(3!)+.. is

    Text Solution

    |

  17. 1+(loge n)^2 /(2!) + (loge n )^4 / (4!)+...=

    Text Solution

    |

  18. (2)/(3!)+(4)/(5!)+(6)/(7!)+..is equal to

    Text Solution

    |

  19. Sum of n terms of the series 1/(1.2.3.4.)+1/(2.3.4.5) +1/(3.4.5.6)+.....

    Text Solution

    |

  20. The value of 1+(log(e)x)+(log(e)x)^(2)/(2!)+(log(e)x)^(3)/(3!)+…inft...

    Text Solution

    |

  21. If |x|lt1 then the coefficient of x^(3) in the expansion of log(1+x+x^...

    Text Solution

    |