Home
Class 12
MATHS
If log(1-x+x^(2))=a(1)x+a(2)x^(2)+a(3)x^...

If log`(1-x+x^(2))=a_(1)x+a_(2)x^(2)+a_(3)x^(3)+…`
then `a_(3)+a_(6)+a_(9)+..` is equal to

A

log 2

B

`2/3 log 2`

C

`1/3 log 2`

D

`2 log 2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum \( a_3 + a_6 + a_9 + \ldots \) where \( \log(1 - x + x^2) = a_1 x + a_2 x^2 + a_3 x^3 + \ldots \). ### Step-by-Step Solution: 1. **Rewrite the Logarithm:** We start with the expression: \[ \log(1 - x + x^2) \] We can manipulate this expression by rewriting it as: \[ \log\left(\frac{1 + (1 - x + x^2)}{1 + x}\right) \] 2. **Simplifying the Expression:** We multiply and divide by \( 1 + x \): \[ \log\left(\frac{(1 + x)(1 - x + x^2)}{1 + x}\right) = \log\left(1 + x^2 - x + x^3\right) - \log(1 + x) \] 3. **Expand Both Logarithms:** We can expand both logarithmic expressions using their Taylor series: - For \( \log(1 + x) \): \[ \log(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots \] - For \( \log(1 + x^2 - x + x^3) \): We can expand this using the series expansion as well, but we need to focus on the coefficients of \( x^3 \) and higher. 4. **Finding Coefficients:** To find \( a_3, a_6, a_9, \ldots \), we need to find the coefficients of \( x^3, x^6, x^9, \ldots \) in the expansion. - The coefficient \( a_3 \) comes from the expansion of \( \log(1 + x^2 - x + x^3) \): \[ a_3 = 1 - \frac{1}{3} \] - The coefficient \( a_6 \) is: \[ a_6 = -\frac{1}{2} + \frac{1}{6} \] - The coefficient \( a_9 \) is: \[ a_9 = \frac{1}{3} - \frac{1}{9} \] 5. **Summing the Coefficients:** We sum these coefficients: \[ a_3 + a_6 + a_9 + \ldots = \left(1 - \frac{1}{3}\right) + \left(-\frac{1}{2} + \frac{1}{6}\right) + \left(\frac{1}{3} - \frac{1}{9}\right) + \ldots \] This can be rearranged and simplified. 6. **Recognizing the Series:** The series can be recognized as a combination of logarithmic series. We can express it as: \[ \sum_{n=1}^{\infty} \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \ldots\right) = \log(2) \] 7. **Final Result:** After simplifying, we find: \[ a_3 + a_6 + a_9 + \ldots = \frac{2}{3} \log(2) \] ### Final Answer: Thus, the value of \( a_3 + a_6 + a_9 + \ldots \) is: \[ \frac{2}{3} \log(2) \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|37 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

Statement 1: If log(1-x+x^(2))=a_(1)x+a_(2)x^(32)+a_(3)x^(3)+.. then a_(3)+a_(6)+a_(9)+..=2/3log_(e)2 Statement 2: 1-1/2+1/3-11/4+1/5-1/6+..=log_(e)2

If log(1-x+x^(2))=a_(1)x+a_(2)x^(2)+a_(3)x^(3) +…and n is not a mutiple of 3 then a_(n) is equal to

If (1+x+x)^(2n)=a_(0)+a_(1)x+a_(2)x^(2)+a_(2n)x^(2n) , then a_(1)+a_(3)+a_(5)+……..+a_(2n-1) is equal to

If log_(e )((1+x)/(1-x))=a_(0)+a_(1)x+a_(2)x^(2)+…oo then a_(1), a_(3), a_(5) are in

Let (x+10)^(50)+(x-10)^(50)=a_(0)+a_(1)x+a_(2)x^(2)+...+a_(50)x^(50) for all x in R , then (a_(2))/(a_(0)) is equal to

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n) where a_(0) , a(1) , a(2) are unequal and in A.P., then (1)/(a_(n)) is equal to :

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n) , then prove that a_(0)+a_(3)+a_(6)+a_(9)+……=3^(n-1)

If (1+2x+3x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+ . . .+a_(20)x^(20), then

( 1 + x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(2n) x^(2n) , then a_(0) + a_(1) + a_(2) + a_(3) - a_(4) + … a_(2n) = .

If (1+px+x^(2))^(n)=1+a_(1)x+a_(2)x^(2)+…+a_(2n)x^(2n) . The value of a_(1)+3a_(2)+5a_(3)+7a_(4)+….(4n-1)a_(2n) when p=-3 and n in even is

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Chapter Test
  1. The series expansion of log{(1+x)^(1+x)(1-x)^(1-x)} is

    Text Solution

    |

  2. 2log x-log(x+1)-log(x-1) is equals to

    Text Solution

    |

  3. The coefficient of x^(n) in the expansion of log(e)(1+3x+2x^2) is

    Text Solution

    |

  4. If x ne 0 then the sum of the series 1+(x)/(2!)+(2x^(2))/(3!)+(3x^(3...

    Text Solution

    |

  5. If log(1-x+x^(2))=a(1)x+a(2)x^(2)+a(3)x^(3)+…and n is not a mutiple of...

    Text Solution

    |

  6. If log(1-x+x^(2))=a(1)x+a(2)x^(2)+a(3)x^(3)+… then a(3)+a(6)+a(9)+.....

    Text Solution

    |

  7. The coefficient of x^(n) in the expansion of log(a)(1+x) is

    Text Solution

    |

  8. The coeffiecent of n^(-r) in the expansion of log(10)((n)/(n-1)) is

    Text Solution

    |

  9. The sum of the series (x-1)/(x+1)+1/2(x^(2)-1)/(x+1)^(2)+1/3(x^(3)-1...

    Text Solution

    |

  10. The sum of series 2[ 7^(-1)+3^(-1).7^(-3)+5^(-1).7^(-5)+...] is

    Text Solution

    |

  11. The coefficient of x^(6) in the expansion of log{(1+x)^(1+x)(1-x)^(...

    Text Solution

    |

  12. The sum of the series 1/2x^2+2/3x^3+3/4x^4+4/5x^5+... is :

    Text Solution

    |

  13. If x,y,z are three consecutive positive integers and X-Z + 2 = 0, then...

    Text Solution

    |

  14. The sum of the series ((1)^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+(...

    Text Solution

    |

  15. The value of 1-log(e)2+(log(e)2)^(2)/(2!)-(log(e)2)^(3)/(3!)+.. is

    Text Solution

    |

  16. 1+(loge n)^2 /(2!) + (loge n )^4 / (4!)+...=

    Text Solution

    |

  17. (2)/(3!)+(4)/(5!)+(6)/(7!)+..is equal to

    Text Solution

    |

  18. Sum of n terms of the series 1/(1.2.3.4.)+1/(2.3.4.5) +1/(3.4.5.6)+.....

    Text Solution

    |

  19. The value of 1+(log(e)x)+(log(e)x)^(2)/(2!)+(log(e)x)^(3)/(3!)+…inft...

    Text Solution

    |

  20. If |x|lt1 then the coefficient of x^(3) in the expansion of log(1+x+x^...

    Text Solution

    |