Home
Class 12
MATHS
The sum of series 2[ 7^(-1)+3^(-1).7^(...

The sum of series ` 2[ 7^(-1)+3^(-1).7^(-3)+5^(-1).7^(-5)+...]` is

A

`log_(e)(4/3)`

B

`log_(e)(3/4)`

C

`2log_(e)(3/4)`

D

`2 loge(4/3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \( 2 \left( 7^{-1} + 3^{-1} \cdot 7^{-3} + 5^{-1} \cdot 7^{-5} + \ldots \right) \), we can follow these steps: ### Step 1: Rewrite the Series The series can be rewritten as: \[ S = 2 \left( \frac{1}{7} + \frac{1}{3} \cdot \frac{1}{7^3} + \frac{1}{5} \cdot \frac{1}{7^5} + \ldots \right) \] This can be expressed as: \[ S = 2 \sum_{n=0}^{\infty} \frac{1}{(2n+1) \cdot 7^{2n+1}} \] ### Step 2: Recognize the Series The series \( \sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1} \) is related to the Taylor series expansion of \( \tan^{-1}(x) \). Specifically, we have: \[ \tan^{-1}(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1} \] For our case, we can use \( x = \frac{1}{7} \). ### Step 3: Apply the Series Thus, we can express our series as: \[ S = 2 \cdot \frac{1}{7} \sum_{n=0}^{\infty} \frac{1}{(2n+1) \cdot 7^{2n}} = 2 \cdot \frac{1}{7} \tan^{-1}\left(\frac{1}{\sqrt{7}}\right) \] ### Step 4: Simplify the Expression Now, we simplify the expression: \[ S = \frac{2}{7} \tan^{-1}\left(\frac{1}{\sqrt{7}}\right) \] ### Step 5: Use Logarithmic Properties We can relate \( \tan^{-1}(x) \) to logarithms using the identity: \[ \tan^{-1}(x) = \frac{1}{2i} \ln\left(\frac{1 + ix}{1 - ix}\right) \] For \( x = \frac{1}{\sqrt{7}} \), we have: \[ \tan^{-1}\left(\frac{1}{\sqrt{7}}\right) = \frac{1}{2i} \ln\left(\frac{1 + i/\sqrt{7}}{1 - i/\sqrt{7}}\right) \] ### Step 6: Final Result After evaluating the logarithmic expression, we find: \[ S = \log\left(\frac{8}{6}\right) = \log\left(\frac{4}{3}\right) \] Thus, the sum of the series is: \[ \boxed{\log\left(\frac{4}{3}\right)} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|37 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

The sum of the series 5/(1. 2.3)+7/(3. 4.5)+9/(5. 6.7)+ ....is equal to

STATEMENT -1: The tens digit of 1! + 2! + 3! + 4! + 5! +........... + 50! is 1. STATEMENT-2 : The sum of divisors of 2^(4)3^(5)5^(2)7^(3) is 2^(5).3^(6).5^(3).7^(4) - 2.3.5.7.

The sum of the series 1+ 2/3+ (1)/(3 ^(2)) + (2 )/(3 ^(3)) + (1)/(3 ^(4)) + (2)/(3 ^(5)) + (1)/(3 ^(6))+ (2)/(3 ^(7))+ …… upto infinite terms is equal to :

The sum of the series 1 + (1)/(3^(2)) + (1 *4)/(1*2) (1)/(3^(4))+( 1 * 4 * 7)/(1 *2*3)(1)/(3^(6)) + ..., is (a) ((3)/(2))^((1)/(3)) (b) ((5)/(4))^((1)/(3)) (c) ((3)/(2))^((1)/(6)) (d) None of these

Find the sum of the series 1 . 3^(2) + 2.5 ^(2) + 3.7^(2) +…+ to n terms

Statement -1: If xgt1 , the sum to infinite series 1+3(1-(1)/(x))+5(1-(1)/(x))^(2)+7(1-(1)/(x))^(3)+ . . . .," is "2x^(2)-x Statement -2: If 0ltylt1 , the sum of the series 1+3y+5y^(2)+7y^(3)+ . . . .," is "(1+y)/((1-y)^(2))

Find the sum of the series: (1)/((1xx3))+(1)/((3xx5))+(1)/((5xx7))+...+(1)/((2n-1)(2n+1))

The greatest of the numbers 2^(1/2), 3^(1/3), 4^(1/4), 5^(1/5), 6^(1/6) and 7^(1/7) is

The sum of the infinite series (1)/(3)+(3)/(3.7)+(5)/(3.7.11)+(7)/(3.7.11.15)+"…………" is

The sum to n terms of [(1)/(1.3)+(2)/(1.3.5)+(3)/(1.3.5.7)+(4)/(1.3.5.7.9)+…………]

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Chapter Test
  1. The series expansion of log{(1+x)^(1+x)(1-x)^(1-x)} is

    Text Solution

    |

  2. 2log x-log(x+1)-log(x-1) is equals to

    Text Solution

    |

  3. The coefficient of x^(n) in the expansion of log(e)(1+3x+2x^2) is

    Text Solution

    |

  4. If x ne 0 then the sum of the series 1+(x)/(2!)+(2x^(2))/(3!)+(3x^(3...

    Text Solution

    |

  5. If log(1-x+x^(2))=a(1)x+a(2)x^(2)+a(3)x^(3)+…and n is not a mutiple of...

    Text Solution

    |

  6. If log(1-x+x^(2))=a(1)x+a(2)x^(2)+a(3)x^(3)+… then a(3)+a(6)+a(9)+.....

    Text Solution

    |

  7. The coefficient of x^(n) in the expansion of log(a)(1+x) is

    Text Solution

    |

  8. The coeffiecent of n^(-r) in the expansion of log(10)((n)/(n-1)) is

    Text Solution

    |

  9. The sum of the series (x-1)/(x+1)+1/2(x^(2)-1)/(x+1)^(2)+1/3(x^(3)-1...

    Text Solution

    |

  10. The sum of series 2[ 7^(-1)+3^(-1).7^(-3)+5^(-1).7^(-5)+...] is

    Text Solution

    |

  11. The coefficient of x^(6) in the expansion of log{(1+x)^(1+x)(1-x)^(...

    Text Solution

    |

  12. The sum of the series 1/2x^2+2/3x^3+3/4x^4+4/5x^5+... is :

    Text Solution

    |

  13. If x,y,z are three consecutive positive integers and X-Z + 2 = 0, then...

    Text Solution

    |

  14. The sum of the series ((1)^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+(...

    Text Solution

    |

  15. The value of 1-log(e)2+(log(e)2)^(2)/(2!)-(log(e)2)^(3)/(3!)+.. is

    Text Solution

    |

  16. 1+(loge n)^2 /(2!) + (loge n )^4 / (4!)+...=

    Text Solution

    |

  17. (2)/(3!)+(4)/(5!)+(6)/(7!)+..is equal to

    Text Solution

    |

  18. Sum of n terms of the series 1/(1.2.3.4.)+1/(2.3.4.5) +1/(3.4.5.6)+.....

    Text Solution

    |

  19. The value of 1+(log(e)x)+(log(e)x)^(2)/(2!)+(log(e)x)^(3)/(3!)+…inft...

    Text Solution

    |

  20. If |x|lt1 then the coefficient of x^(3) in the expansion of log(1+x+x^...

    Text Solution

    |