Home
Class 12
MATHS
The coefficient of x^(6) in the expansio...

The coefficient of `x^(6)` in the expansion of
`log{(1+x)^(1+x)(1-x)^(1-x)`}` is

A

`(1)/(15)`

B

`(1)/(30)`

C

`(1)/(10)`

D

`(1)/(45)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the coefficient of \( x^6 \) in the expansion of \( \log{(1+x)^{1+x}(1-x)^{1-x}} \), we can follow these steps: ### Step 1: Rewrite the Expression We start with the expression: \[ \log{(1+x)^{1+x}(1-x)^{1-x}} \] Using the logarithmic property \( \log{(a \cdot b)} = \log{a} + \log{b} \), we can rewrite this as: \[ \log{(1+x)^{1+x}} + \log{(1-x)^{1-x}} \] ### Step 2: Apply Logarithmic Properties Using the property \( \log{(a^b)} = b \log{a} \), we can further simplify: \[ (1+x) \log{(1+x)} + (1-x) \log{(1-x)} \] ### Step 3: Expand the Logarithms Now, we need the series expansions for \( \log{(1+x)} \) and \( \log{(1-x)} \): \[ \log{(1+x)} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6} + \ldots \] \[ \log{(1-x)} = -\left(x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \frac{x^5}{5} + \frac{x^6}{6} + \ldots\right) \] ### Step 4: Substitute the Expansions Substituting these expansions back into our expression gives: \[ (1+x) \left(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6} + \ldots\right) + (1-x) \left(-x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \frac{x^5}{5} - \frac{x^6}{6} - \ldots\right) \] ### Step 5: Combine the Terms Now, we need to combine the terms to find the coefficient of \( x^6 \): 1. From \( (1+x) \): - \( 1 \cdot \left(-\frac{x^6}{6}\right) = -\frac{1}{6} \) - \( x \cdot \left(\frac{x^5}{5}\right) = \frac{1}{5} \) 2. From \( (1-x) \): - \( 1 \cdot (-x) \cdot \left(-\frac{x^5}{5}\right) = -\frac{1}{6} \) - \( -x \cdot \left(-\frac{x^5}{5}\right) = \frac{1}{5} \) ### Step 6: Calculate the Coefficient Combining all these contributions: \[ -\frac{1}{6} + \frac{1}{5} - \frac{1}{6} + \frac{1}{5} \] Combining like terms: \[ -\frac{2}{6} + \frac{2}{5} = -\frac{1}{3} + \frac{2}{5} \] Finding a common denominator (15): \[ -\frac{5}{15} + \frac{6}{15} = \frac{1}{15} \] ### Conclusion The coefficient of \( x^6 \) in the expansion is: \[ \frac{1}{15} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|37 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

The coefficient of x^(n) in the expansion of log_(a)(1+x) is

The coefficient of x^(6) in the expansion of (1+x+x^(2))^(6) is

The coefficient of x^(4) in the expansion of (1+x+x^(2))^(6) is

The series expansion of log{(1+x)^(1+x)(1-x)^(1-x)} is

The coefficient of x^(n) in the expansion of (1+x)(1-x)^(n) is

For |x| lt 1/5 , the coefficient of x^(3) in the expansion of (1)/((1-5x)(1-4x)) is

The coefficient of x^(6) in the expansion of (1+x+x^(2)+x^(3))(1-x)^(6) is

The coefficient of x^6 in the expansion of (1+x+x^2)^(-3), is

The coefficient of x^(n) in the expansion of log_(e)(1+3x+2x^2) is

Coefficient of x^(n) in the expansion of ((1+x)^(n))/(1-x)

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Chapter Test
  1. The series expansion of log{(1+x)^(1+x)(1-x)^(1-x)} is

    Text Solution

    |

  2. 2log x-log(x+1)-log(x-1) is equals to

    Text Solution

    |

  3. The coefficient of x^(n) in the expansion of log(e)(1+3x+2x^2) is

    Text Solution

    |

  4. If x ne 0 then the sum of the series 1+(x)/(2!)+(2x^(2))/(3!)+(3x^(3...

    Text Solution

    |

  5. If log(1-x+x^(2))=a(1)x+a(2)x^(2)+a(3)x^(3)+…and n is not a mutiple of...

    Text Solution

    |

  6. If log(1-x+x^(2))=a(1)x+a(2)x^(2)+a(3)x^(3)+… then a(3)+a(6)+a(9)+.....

    Text Solution

    |

  7. The coefficient of x^(n) in the expansion of log(a)(1+x) is

    Text Solution

    |

  8. The coeffiecent of n^(-r) in the expansion of log(10)((n)/(n-1)) is

    Text Solution

    |

  9. The sum of the series (x-1)/(x+1)+1/2(x^(2)-1)/(x+1)^(2)+1/3(x^(3)-1...

    Text Solution

    |

  10. The sum of series 2[ 7^(-1)+3^(-1).7^(-3)+5^(-1).7^(-5)+...] is

    Text Solution

    |

  11. The coefficient of x^(6) in the expansion of log{(1+x)^(1+x)(1-x)^(...

    Text Solution

    |

  12. The sum of the series 1/2x^2+2/3x^3+3/4x^4+4/5x^5+... is :

    Text Solution

    |

  13. If x,y,z are three consecutive positive integers and X-Z + 2 = 0, then...

    Text Solution

    |

  14. The sum of the series ((1)^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+(...

    Text Solution

    |

  15. The value of 1-log(e)2+(log(e)2)^(2)/(2!)-(log(e)2)^(3)/(3!)+.. is

    Text Solution

    |

  16. 1+(loge n)^2 /(2!) + (loge n )^4 / (4!)+...=

    Text Solution

    |

  17. (2)/(3!)+(4)/(5!)+(6)/(7!)+..is equal to

    Text Solution

    |

  18. Sum of n terms of the series 1/(1.2.3.4.)+1/(2.3.4.5) +1/(3.4.5.6)+.....

    Text Solution

    |

  19. The value of 1+(log(e)x)+(log(e)x)^(2)/(2!)+(log(e)x)^(3)/(3!)+…inft...

    Text Solution

    |

  20. If |x|lt1 then the coefficient of x^(3) in the expansion of log(1+x+x^...

    Text Solution

    |