Home
Class 12
MATHS
The sum of the series ((1)^(2).2)/(1!)+(...

The sum of the series `((1)^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+(4^(2).5)/(4!)`+..is

A

5e

B

3e

C

7e

D

2e

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \[ S = \sum_{n=1}^{\infty} \frac{n^2(n+1)}{n!} \] we can break down the general term and evaluate it step by step. ### Step 1: Write the general term The general term of the series can be expressed as: \[ \frac{n^2(n+1)}{n!} = \frac{n^3 + n^2}{n!} \] ### Step 2: Separate the series We can separate the series into two parts: \[ S = \sum_{n=1}^{\infty} \frac{n^3}{n!} + \sum_{n=1}^{\infty} \frac{n^2}{n!} \] ### Step 3: Evaluate the first series \(\sum_{n=1}^{\infty} \frac{n^3}{n!}\) To evaluate \(\sum_{n=1}^{\infty} \frac{n^3}{n!}\), we can use the identity: \[ n^3 = n(n-1)(n-2) + 3n(n-1) + n \] Thus, \[ \sum_{n=1}^{\infty} \frac{n^3}{n!} = \sum_{n=1}^{\infty} \frac{n(n-1)(n-2)}{n!} + 3\sum_{n=1}^{\infty} \frac{n(n-1)}{n!} + \sum_{n=1}^{\infty} \frac{n}{n!} \] Now, we can simplify each part: 1. \(\sum_{n=1}^{\infty} \frac{n(n-1)(n-2)}{n!} = \sum_{n=3}^{\infty} \frac{1}{(n-3)!} = e\) 2. \(\sum_{n=1}^{\infty} \frac{n(n-1)}{n!} = \sum_{n=2}^{\infty} \frac{1}{(n-2)!} = e\) 3. \(\sum_{n=1}^{\infty} \frac{n}{n!} = \sum_{n=1}^{\infty} \frac{1}{(n-1)!} = e\) Putting it all together: \[ \sum_{n=1}^{\infty} \frac{n^3}{n!} = e + 3e + e = 5e \] ### Step 4: Evaluate the second series \(\sum_{n=1}^{\infty} \frac{n^2}{n!}\) Using a similar approach: \[ \sum_{n=1}^{\infty} \frac{n^2}{n!} = \sum_{n=1}^{\infty} \frac{n(n-1)}{n!} + \sum_{n=1}^{\infty} \frac{n}{n!} \] 1. \(\sum_{n=1}^{\infty} \frac{n(n-1)}{n!} = e\) 2. \(\sum_{n=1}^{\infty} \frac{n}{n!} = e\) Thus, \[ \sum_{n=1}^{\infty} \frac{n^2}{n!} = e + e = 2e \] ### Step 5: Combine the results Now we can combine the results from both series: \[ S = 5e + 2e = 7e \] ### Final Answer The sum of the series is \[ \boxed{7e} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|37 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

The sum of the series (1^(2).2^(2))/(1!)+(2^(2).3^(2))/(2!)+(3^(2).4^(2))/(3!) +.. Is

The sum of the series 1+(2^(4))/(2!)+(3^(4))/(3!)+(4^(4))/(4!)+(5^(4))/(5!) +…..is

The sum of the series (x^(2))/(2)+(2)/(3)x^(3)+(3)/(4)x^(4)+(4)/(5)x^(5)+….=

The sum of the series 1+(1^2+2^2)/(2!)+(1^(2)+2^(2)+3^(2))/(3!)+(1^(2)+2^(2)+3^(2)+4^2)/(4!) +.. Is

The sum of the infinite series, 1 ^(2) -(2^(2))/(5) + (3 ^(2))/(5 ^(2))+ (4^(2))/(5 ^(3))+ (5 ^(2))/(5 ^(4))-(6 ^(2))/(5 ^(5)) + ..... is:

Statement -1: The sum of the series (1)/(1!)+(2)/(2!)+(3)/(3!)+(4)/(4!)+..to infty is e Statement 2: The sum of the seies (1)/(1!)x+(2)/(2!)x^(2)+(3)/(3!)x^(3)+(4)/(4!)x^(4)..to infty is x e^(x)

The sum of the series x+(2^(4))/(2!)x^(2)+(3^(4))/(3!)x^(3)+(4^(4))/(4!) +…..is

The sum of the series (1)/(1!)+(2)/(2!)+(3)/(3!)+(4)/(4!) +…..to infty is

The sum of the series 1 + (1)/(1!) ((1)/(4)) + (1.3)/(2!) ((1)/(4))^(2) + (1.3.5)/(3!) ((1)/(4))^(3)+ ... to infty , is

The sum of the series x+(2^(3))/(2!)x^(2)+(3^(3))/(3!)x^(3)+(4^(3))/(4!)x^(4) +……..to infty is

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Chapter Test
  1. The series expansion of log{(1+x)^(1+x)(1-x)^(1-x)} is

    Text Solution

    |

  2. 2log x-log(x+1)-log(x-1) is equals to

    Text Solution

    |

  3. The coefficient of x^(n) in the expansion of log(e)(1+3x+2x^2) is

    Text Solution

    |

  4. If x ne 0 then the sum of the series 1+(x)/(2!)+(2x^(2))/(3!)+(3x^(3...

    Text Solution

    |

  5. If log(1-x+x^(2))=a(1)x+a(2)x^(2)+a(3)x^(3)+…and n is not a mutiple of...

    Text Solution

    |

  6. If log(1-x+x^(2))=a(1)x+a(2)x^(2)+a(3)x^(3)+… then a(3)+a(6)+a(9)+.....

    Text Solution

    |

  7. The coefficient of x^(n) in the expansion of log(a)(1+x) is

    Text Solution

    |

  8. The coeffiecent of n^(-r) in the expansion of log(10)((n)/(n-1)) is

    Text Solution

    |

  9. The sum of the series (x-1)/(x+1)+1/2(x^(2)-1)/(x+1)^(2)+1/3(x^(3)-1...

    Text Solution

    |

  10. The sum of series 2[ 7^(-1)+3^(-1).7^(-3)+5^(-1).7^(-5)+...] is

    Text Solution

    |

  11. The coefficient of x^(6) in the expansion of log{(1+x)^(1+x)(1-x)^(...

    Text Solution

    |

  12. The sum of the series 1/2x^2+2/3x^3+3/4x^4+4/5x^5+... is :

    Text Solution

    |

  13. If x,y,z are three consecutive positive integers and X-Z + 2 = 0, then...

    Text Solution

    |

  14. The sum of the series ((1)^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+(...

    Text Solution

    |

  15. The value of 1-log(e)2+(log(e)2)^(2)/(2!)-(log(e)2)^(3)/(3!)+.. is

    Text Solution

    |

  16. 1+(loge n)^2 /(2!) + (loge n )^4 / (4!)+...=

    Text Solution

    |

  17. (2)/(3!)+(4)/(5!)+(6)/(7!)+..is equal to

    Text Solution

    |

  18. Sum of n terms of the series 1/(1.2.3.4.)+1/(2.3.4.5) +1/(3.4.5.6)+.....

    Text Solution

    |

  19. The value of 1+(log(e)x)+(log(e)x)^(2)/(2!)+(log(e)x)^(3)/(3!)+…inft...

    Text Solution

    |

  20. If |x|lt1 then the coefficient of x^(3) in the expansion of log(1+x+x^...

    Text Solution

    |