Home
Class 12
MATHS
The value of 1-log(e)2+(log(e)2)^(2)/(2!...

The value of `1-log_(e)2+(log_(e)2)^(2)/(2!)-(log_(e)2)^(3)/(3!)+..` is

A

2

B

`1/2`

C

`log_(e)3`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 1 - \log_e 2 + \frac{(\log_e 2)^2}{2!} - \frac{(\log_e 2)^3}{3!} + \ldots \), we can recognize that it resembles the Taylor series expansion of \( e^{-x} \). ### Step-by-Step Solution: 1. **Identify the Series**: The given series can be rewritten as: \[ 1 - \log_e 2 + \frac{(\log_e 2)^2}{2!} - \frac{(\log_e 2)^3}{3!} + \ldots \] This is the Taylor series expansion for \( e^{-x} \) where \( x = \log_e 2 \). 2. **Use the Series Expansion**: The Taylor series for \( e^{-x} \) is given by: \[ e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \ldots \] By substituting \( x = \log_e 2 \), we have: \[ e^{-\log_e 2} = 1 - \log_e 2 + \frac{(\log_e 2)^2}{2!} - \frac{(\log_e 2)^3}{3!} + \ldots \] 3. **Simplify the Exponential**: We know from properties of logarithms that: \[ e^{-\log_e 2} = \frac{1}{e^{\log_e 2}} = \frac{1}{2} \] 4. **Conclusion**: Therefore, the value of the original expression is: \[ \frac{1}{2} \] ### Final Answer: The value of \( 1 - \log_e 2 + \frac{(\log_e 2)^2}{2!} - \frac{(\log_e 2)^3}{3!} + \ldots \) is \( \frac{1}{2} \).
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|37 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

The value of 1+(log_(e)x)+(log_(e)x)^(2)/(2!)+(log_(e)x)^(3)/(3!)+…infty

1+(log_(e)5)/(1!) +(log_e5)^2/(2!)+(log_e5)^3/(3!)+ .......oo =

The nth term of log_(e)2 is

Let x and a be positive real numbers Statement 1: The sum of theries 1+(log_(e)x)^(2)/(2!)+(log_(e)x)^(3)/(3!)+(log_(e)x)^(2)+…to infty is x Statement2: The sum of the series 1+(xlog_(e)a)+(x^(2))/(2!)(log_(e)x))^(2)+(x^(3))/(3!)(log_(e)a)^(3)/(3!)+to infty is a^(x)

1+(log_e n)^2 /(2!) + (log_e n )^4 / (4!)+...=

P = 1 - (3)/(1!) + 9/(2!) - (27)/(3!) + ....... Q = 1+ (4)/(1!) +(16)/(2!) +(64)/(3!) + ........ R=log_(e)3+((log_e3)^2)/(2!)+((log_e3)^3)/(3!)+..... The ascending order of P,Q,R

The value of (6 a^(log_(e)b)(log_(a^(2))b)(log_(b^(2))a))/(e^(log_(e)a*log_(e)b)) is

The sum of the series log_e(3)+(log_e(3))^3/(3!)+(log_e(3))^5/(5!)+....+ is

The value of lim_(x to oo ) (log_(e)(log_(e)x))/(e^(sqrt(x))) is _________. (a) π/ 2 (b)0 (c)-π (d)π

1+ 2 (log_ea)+(2^2)/(2!) (log_ea)^2 +(2^3)/(3!) (log_e a)^3+...=

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Chapter Test
  1. The series expansion of log{(1+x)^(1+x)(1-x)^(1-x)} is

    Text Solution

    |

  2. 2log x-log(x+1)-log(x-1) is equals to

    Text Solution

    |

  3. The coefficient of x^(n) in the expansion of log(e)(1+3x+2x^2) is

    Text Solution

    |

  4. If x ne 0 then the sum of the series 1+(x)/(2!)+(2x^(2))/(3!)+(3x^(3...

    Text Solution

    |

  5. If log(1-x+x^(2))=a(1)x+a(2)x^(2)+a(3)x^(3)+…and n is not a mutiple of...

    Text Solution

    |

  6. If log(1-x+x^(2))=a(1)x+a(2)x^(2)+a(3)x^(3)+… then a(3)+a(6)+a(9)+.....

    Text Solution

    |

  7. The coefficient of x^(n) in the expansion of log(a)(1+x) is

    Text Solution

    |

  8. The coeffiecent of n^(-r) in the expansion of log(10)((n)/(n-1)) is

    Text Solution

    |

  9. The sum of the series (x-1)/(x+1)+1/2(x^(2)-1)/(x+1)^(2)+1/3(x^(3)-1...

    Text Solution

    |

  10. The sum of series 2[ 7^(-1)+3^(-1).7^(-3)+5^(-1).7^(-5)+...] is

    Text Solution

    |

  11. The coefficient of x^(6) in the expansion of log{(1+x)^(1+x)(1-x)^(...

    Text Solution

    |

  12. The sum of the series 1/2x^2+2/3x^3+3/4x^4+4/5x^5+... is :

    Text Solution

    |

  13. If x,y,z are three consecutive positive integers and X-Z + 2 = 0, then...

    Text Solution

    |

  14. The sum of the series ((1)^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+(...

    Text Solution

    |

  15. The value of 1-log(e)2+(log(e)2)^(2)/(2!)-(log(e)2)^(3)/(3!)+.. is

    Text Solution

    |

  16. 1+(loge n)^2 /(2!) + (loge n )^4 / (4!)+...=

    Text Solution

    |

  17. (2)/(3!)+(4)/(5!)+(6)/(7!)+..is equal to

    Text Solution

    |

  18. Sum of n terms of the series 1/(1.2.3.4.)+1/(2.3.4.5) +1/(3.4.5.6)+.....

    Text Solution

    |

  19. The value of 1+(log(e)x)+(log(e)x)^(2)/(2!)+(log(e)x)^(3)/(3!)+…inft...

    Text Solution

    |

  20. If |x|lt1 then the coefficient of x^(3) in the expansion of log(1+x+x^...

    Text Solution

    |