Home
Class 12
MATHS
1+(loge n)^2 /(2!) + (loge n )^4 / (4!)+...

`1+(log_e n)^2 /(2!) + (log_e n )^4 / (4!)+...=`

A

n

B

`(1)/(n)`

C

`(n+n^(-1))/(2)`

D

`(e^(n)+e^(-n))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ 1 + \frac{(\log_e n)^2}{2!} + \frac{(\log_e n)^4}{4!} + \ldots \] we can recognize that this series resembles the series expansion of the exponential function. Let's break it down step by step. ### Step 1: Recognize the Series The series can be identified as the sum of even powers of \(\log_e n\) divided by their factorials. This is similar to the expansion of \(e^x\) and \(e^{-x}\). ### Step 2: Use the Exponential Series Recall the series expansion for \(e^x\): \[ e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots \] And for \(e^{-x}\): \[ e^{-x} = 1 - \frac{x}{1!} + \frac{x^2}{2!} - \frac{x^3}{3!} + \ldots \] ### Step 3: Sum the Two Series If we add these two series, the odd powers will cancel out: \[ e^x + e^{-x} = 2 \left( 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \ldots \right) \] This means: \[ \frac{e^x + e^{-x}}{2} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \ldots \] ### Step 4: Substitute \(x = \log_e n\) Now, we can substitute \(x = \log_e n\): \[ \frac{e^{\log_e n} + e^{-\log_e n}}{2} = 1 + \frac{(\log_e n)^2}{2!} + \frac{(\log_e n)^4}{4!} + \ldots \] ### Step 5: Simplify the Left Side Now, simplify the left side: \[ e^{\log_e n} = n \quad \text{and} \quad e^{-\log_e n} = \frac{1}{n} \] Thus, we have: \[ \frac{n + \frac{1}{n}}{2} \] ### Step 6: Final Result Putting it all together, we find: \[ 1 + \frac{(\log_e n)^2}{2!} + \frac{(\log_e n)^4}{4!} + \ldots = \frac{n + \frac{1}{n}}{2} \] ### Conclusion The final value of the expression is: \[ \frac{n + n^{-1}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|37 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

1+(log_(e)5)/(1!) +(log_e5)^2/(2!)+(log_e5)^3/(3!)+ .......oo =

1+ 2 (log_ea)+(2^2)/(2!) (log_ea)^2 +(2^3)/(3!) (log_e a)^3+...=

The value of 1-log_(e)2+(log_(e)2)^(2)/(2!)-(log_(e)2)^(3)/(3!)+.. is

P = 1 - (3)/(1!) + 9/(2!) - (27)/(3!) + ....... Q = 1+ (4)/(1!) +(16)/(2!) +(64)/(3!) + ........ R=log_(e)3+((log_e3)^2)/(2!)+((log_e3)^3)/(3!)+..... The ascending order of P,Q,R

Let x and a be positive real numbers Statement 1: The sum of theries 1+(log_(e)x)^(2)/(2!)+(log_(e)x)^(3)/(3!)+(log_(e)x)^(2)+…to infty is x Statement2: The sum of the series 1+(xlog_(e)a)+(x^(2))/(2!)(log_(e)x))^(2)+(x^(3))/(3!)(log_(e)a)^(3)/(3!)+to infty is a^(x)

The value of 1+(log_(e)x)+(log_(e)x)^(2)/(2!)+(log_(e)x)^(3)/(3!)+…infty

A value of C for which the conclusion of Mean Value Theorem holds for the function f(x)""=""(log)_e x on the interval [1, 3] is (1) 2(log)_3e (2) 1/2""(log)_e3 (3) (log)_3e (4) (log)_e3

Evaluate: int(e^(6\ (log)_e x)-e^(5\ (log)_e x))/(e^(4\ (log)_e x)-e^(3\ (log)_e x))\ dx

int log_e xdx = int 1/(log_x e) dx =

Evaluate: int(e^(5\ (log)_e x)-e^(4\ (log)_e x))/(e^(3\ (log)_e x)-e^(2\ (log)_e x))\ dx

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Chapter Test
  1. The series expansion of log{(1+x)^(1+x)(1-x)^(1-x)} is

    Text Solution

    |

  2. 2log x-log(x+1)-log(x-1) is equals to

    Text Solution

    |

  3. The coefficient of x^(n) in the expansion of log(e)(1+3x+2x^2) is

    Text Solution

    |

  4. If x ne 0 then the sum of the series 1+(x)/(2!)+(2x^(2))/(3!)+(3x^(3...

    Text Solution

    |

  5. If log(1-x+x^(2))=a(1)x+a(2)x^(2)+a(3)x^(3)+…and n is not a mutiple of...

    Text Solution

    |

  6. If log(1-x+x^(2))=a(1)x+a(2)x^(2)+a(3)x^(3)+… then a(3)+a(6)+a(9)+.....

    Text Solution

    |

  7. The coefficient of x^(n) in the expansion of log(a)(1+x) is

    Text Solution

    |

  8. The coeffiecent of n^(-r) in the expansion of log(10)((n)/(n-1)) is

    Text Solution

    |

  9. The sum of the series (x-1)/(x+1)+1/2(x^(2)-1)/(x+1)^(2)+1/3(x^(3)-1...

    Text Solution

    |

  10. The sum of series 2[ 7^(-1)+3^(-1).7^(-3)+5^(-1).7^(-5)+...] is

    Text Solution

    |

  11. The coefficient of x^(6) in the expansion of log{(1+x)^(1+x)(1-x)^(...

    Text Solution

    |

  12. The sum of the series 1/2x^2+2/3x^3+3/4x^4+4/5x^5+... is :

    Text Solution

    |

  13. If x,y,z are three consecutive positive integers and X-Z + 2 = 0, then...

    Text Solution

    |

  14. The sum of the series ((1)^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+(...

    Text Solution

    |

  15. The value of 1-log(e)2+(log(e)2)^(2)/(2!)-(log(e)2)^(3)/(3!)+.. is

    Text Solution

    |

  16. 1+(loge n)^2 /(2!) + (loge n )^4 / (4!)+...=

    Text Solution

    |

  17. (2)/(3!)+(4)/(5!)+(6)/(7!)+..is equal to

    Text Solution

    |

  18. Sum of n terms of the series 1/(1.2.3.4.)+1/(2.3.4.5) +1/(3.4.5.6)+.....

    Text Solution

    |

  19. The value of 1+(log(e)x)+(log(e)x)^(2)/(2!)+(log(e)x)^(3)/(3!)+…inft...

    Text Solution

    |

  20. If |x|lt1 then the coefficient of x^(3) in the expansion of log(1+x+x^...

    Text Solution

    |